Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 26(10): 5476-5480, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972690

RESUMEN

The hypothesis that infectious agents, particularly herpesviruses, contribute to Alzheimer's disease (AD) pathogenesis has been investigated for decades but has long engendered controversy. In the past 3 years, several studies in mouse models, human tissue models, and population cohorts have reignited interest in this hypothesis. Collectively, these studies suggest that many of the hallmarks of AD, like amyloid beta production and neuroinflammation, can arise as a protective response to acute infection that becomes maladaptive in the case of chronic infection. We place this work in its historical context and explore its etiological implications.


Asunto(s)
Enfermedad de Alzheimer , Herpesviridae , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Animales , Modelos Animales de Enfermedad , Ratones
2.
PLoS Genet ; 14(1): e1007169, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364887

RESUMEN

Dystonia is characterized by involuntary muscle contractions. Its many forms are genetically, phenotypically and etiologically diverse and it is unknown whether their pathogenesis converges on shared pathways. Mutations in THAP1 [THAP (Thanatos-associated protein) domain containing, apoptosis associated protein 1], a ubiquitously expressed transcription factor with DNA binding and protein-interaction domains, cause dystonia, DYT6. There is a unique, neuronal 50-kDa Thap1-like immunoreactive species, and Thap1 levels are auto-regulated on the mRNA level. However, THAP1 downstream targets in neurons, and the mechanism via which it causes dystonia are largely unknown. We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1 C54Y or ΔExon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum. Enriched pathways and gene ontology terms include eIF2α Signaling, Mitochondrial Dysfunction, Neuron Projection Development, Axonal Guidance Signaling, and Synaptic LongTerm Depression, which are dysregulated in a genotype and tissue-dependent manner. Electrophysiological and neurite outgrowth assays were consistent with those enrichments, and the plasticity defects were partially corrected by salubrinal. Notably, several of these pathways were recently implicated in other forms of inherited dystonia, including DYT1. We conclude that dysfunction of these pathways may represent a point of convergence in the pathophysiology of several forms of inherited dystonia.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas de Unión al ADN/genética , Distonía/genética , Mutación , Red Nerviosa/fisiología , Neuronas/fisiología , Proteínas Nucleares/genética , Animales , Animales Recién Nacidos , Células Cultivadas , Humanos , Células K562 , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/metabolismo , Plasticidad Neuronal/genética
3.
Brief Bioinform ; 19(4): 656-678, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28200013

RESUMEN

Increase in global population and growing disease burden due to the emergence of infectious diseases (Zika virus), multidrug-resistant pathogens, drug-resistant cancers (cisplatin-resistant ovarian cancer) and chronic diseases (arterial hypertension) necessitate effective therapies to improve health outcomes. However, the rapid increase in drug development cost demands innovative and sustainable drug discovery approaches. Drug repositioning, the discovery of new or improved therapies by reevaluation of approved or investigational compounds, solves a significant gap in the public health setting and improves the productivity of drug development. As the number of drug repurposing investigations increases, a new opportunity has emerged to understand factors driving drug repositioning through systematic analyses of drugs, drug targets and associated disease indications. However, such analyses have so far been hampered by the lack of a centralized knowledgebase, benchmarking data sets and reporting standards. To address these knowledge and clinical needs, here, we present RepurposeDB, a collection of repurposed drugs, drug targets and diseases, which was assembled, indexed and annotated from public data. RepurposeDB combines information on 253 drugs [small molecules (74.30%) and protein drugs (25.29%)] and 1125 diseases. Using RepurposeDB data, we identified pharmacological (chemical descriptors, physicochemical features and absorption, distribution, metabolism, excretion and toxicity properties), biological (protein domains, functional process, molecular mechanisms and pathway cross talks) and epidemiological (shared genetic architectures, disease comorbidities and clinical phenotype similarities) factors mediating drug repositioning. Collectively, RepurposeDB is developed as the reference database for drug repositioning investigations. The pharmacological, biological and epidemiological principles of drug repositioning identified from the meta-analyses could augment therapeutic development.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Factuales , Enfermedad , Descubrimiento de Drogas , Reposicionamiento de Medicamentos , Proteínas/metabolismo , Humanos , Epidemiología Molecular , Proteínas/genética
4.
Acta Neuropathol ; 140(3): 295-315, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32666270

RESUMEN

MicroRNAs are recognized as important regulators of many facets of physiological brain function while also being implicated in the pathogenesis of several neurological disorders. Dysregulation of miR155 is widely reported across a variety of neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, and traumatic brain injury. In previous work, we observed that experimentally validated miR155 gene targets were consistently enriched among genes identified as differentially expressed across multiple brain tissue and disease contexts. In particular, we found that human herpesvirus-6A (HHV-6A) suppressed miR155, recapitulating reports of miR155 inhibition by HHV-6A in infected T-cells, thyrocytes, and natural killer cells. In earlier studies, we also reported the effects of constitutive deletion of miR155 on accelerating the accumulation of Aß deposits in 4-month-old APP/PSEN1 mice. Herein, we complete the cumulative characterization of transcriptomic, electrophysiological, neuropathological, and learning behavior profiles from 4-, 8- and 10-month-old WT and APP/PSEN1 mice in the absence or presence of miR155. We also integrated human post-mortem brain RNA-sequences from four independent AD consortium studies, together comprising 928 samples collected from six brain regions. We report that gene expression perturbations associated with miR155 deletion in mouse cortex are in aggregate observed to be concordant with AD-associated changes across these independent human late-onset AD (LOAD) data sets, supporting the relevance of our findings to human disease. LOAD has recently been formulated as the clinicopathological manifestation of a multiplex of genetic underpinnings and pathophysiological mechanisms. Our accumulated data are consistent with such a formulation, indicating that miR155 may be uniquely positioned at the intersection of at least four components of this LOAD "multiplex": (1) innate immune response pathways; (2) viral response gene networks; (3) synaptic pathology; and (4) proamyloidogenic pathways involving the amyloid ß peptide (Aß).


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/patología , MicroARNs/genética , Transcriptoma/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Redes Reguladoras de Genes/genética , Humanos , Ratones Transgénicos , Enfermedades del Sistema Nervioso/patología , Placa Amiloide/patología
5.
Mol Psychiatry ; 24(3): 431-446, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30283032

RESUMEN

Integrative gene network approaches enable new avenues of exploration that implicate causal genes in sporadic late-onset Alzheimer's disease (LOAD) pathogenesis, thereby offering novel insights for drug-discovery programs. We previously constructed a probabilistic causal network model of sporadic LOAD and identified TYROBP/DAP12, encoding a microglial transmembrane signaling polypeptide and direct adapter of TREM2, as the most robust key driver gene in the network. Here, we show that absence of TYROBP/DAP12 in a mouse model of AD-type cerebral Aß amyloidosis (APPKM670/671NL/PSEN1Δexon9) recapitulates the expected network characteristics by normalizing the transcriptome of APP/PSEN1 mice and repressing the induction of genes involved in the switch from homeostatic microglia to disease-associated microglia (DAM), including Trem2, complement (C1qa, C1qb, C1qc, and Itgax), Clec7a and Cst7. Importantly, we show that constitutive absence of TYROBP/DAP12 in the amyloidosis mouse model prevented appearance of the electrophysiological and learning behavior alterations associated with the phenotype of APPKM670/671NL/PSEN1Δexon9 mice. Our results suggest that TYROBP/DAP12 could represent a novel therapeutic target to slow, arrest, or prevent the development of sporadic LOAD. These data establish that the network pathology observed in postmortem human LOAD brain can be faithfully recapitulated in the brain of a genetically manipulated mouse. These data also validate our multiscale gene networks by demonstrating how the networks intersect with the standard neuropathological features of LOAD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Amiloidosis/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Amiloidosis/genética , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Redes Reguladoras de Genes , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Patología Molecular/métodos , Fenotipo , Placa Amiloide/patología , Transcriptoma
6.
Mol Psychiatry ; 24(3): 472, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30464330

RESUMEN

This article was originally published under standard licence, but has now been made available under a CC BY 4.0 license. The PDF and HTML versions of the paper have been modified accordingly.

7.
Neural Plast ; 2020: 1673897, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32454811

RESUMEN

The tens of thousands of industrial and synthetic chemicals released into the environment have an unknown but potentially significant capacity to interfere with neurodevelopment. Consequently, there is an urgent need for systematic approaches that can identify disruptive chemicals. Little is known about the impact of environmental chemicals on critical periods of developmental neuroplasticity, in large part, due to the challenge of screening thousands of chemicals. Using an integrative bioinformatics approach, we systematically scanned 2001 environmental chemicals and identified 50 chemicals that consistently dysregulate two transcriptional signatures of critical period plasticity. These chemicals included pesticides (e.g., pyridaben), antimicrobials (e.g., bacitracin), metals (e.g., mercury), anesthetics (e.g., halothane), and other chemicals and mixtures (e.g., vehicle emissions). Application of a chemogenomic enrichment analysis and hierarchical clustering across these diverse chemicals identified two clusters of chemicals with one that mimicked an immune response to pathogen, implicating inflammatory pathways and microglia as a common chemically induced neuropathological process. Thus, we established an integrative bioinformatics approach to systematically scan thousands of environmental chemicals for their ability to dysregulate molecular signatures relevant to critical periods of development.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Inmunidad/genética , Plasticidad Neuronal/genética , Transcriptoma/genética , Animales , Encéfalo/metabolismo , Biología Computacional , Perfilación de la Expresión Génica , Genómica , Ratones Endogámicos C57BL
8.
BMC Genet ; 20(1): 52, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266448

RESUMEN

BACKGROUND: Genetic diversity is known to confer survival advantage in many species across the tree of life. Here, we hypothesize that such pattern applies to humans as well and could be a result of higher fitness in individuals with higher genomic heterozygosity. RESULTS: We use healthy aging as a proxy for better health and fitness, and observe greater heterozygosity in healthy-aged individuals. Specifically, we find that only common genetic variants show significantly higher excess of heterozygosity in the healthy-aged cohort. Lack of difference in heterozygosity for low-frequency variants or disease-associated variants excludes the possibility of compensation for deleterious recessive alleles as a mechanism. In addition, coding SNPs with the highest excess of heterozygosity in the healthy-aged cohort are enriched in genes involved in extracellular matrix and glycoproteins, a group of genes known to be under long-term balancing selection. We also find that individual heterozygosity rate is a significant predictor of electronic health record (EHR)-based estimates of 10-year survival probability in men but not in women, accounting for several factors including age and ethnicity. CONCLUSIONS: Our results demonstrate that the genomic heterozygosity is associated with human healthspan, and that the relationship between higher heterozygosity and healthy aging could be explained by heterozygote advantage. Further characterization of this relationship will have important implications in aging-associated disease risk prediction.


Asunto(s)
Genoma Humano , Estudio de Asociación del Genoma Completo , Genómica , Envejecimiento Saludable/genética , Heterocigoto , Alelos , Femenino , Frecuencia de los Genes , Variación Genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Humanos , Masculino , Polimorfismo de Nucleótido Simple
9.
PLoS Genet ; 12(7): e1006137, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27390852

RESUMEN

Recent systems-based analyses have demonstrated that sleep and stress traits emerge from shared genetic and transcriptional networks, and clinical work has elucidated the emergence of sleep dysfunction and stress susceptibility as early symptoms of Huntington's disease. Understanding the biological bases of these early non-motor symptoms may reveal therapeutic targets that prevent disease onset or slow disease progression, but the molecular mechanisms underlying this complex clinical presentation remain largely unknown. In the present work, we specifically examine the relationship between these psychiatric traits and Huntington's disease (HD) by identifying striatal transcriptional networks shared by HD, stress, and sleep phenotypes. First, we utilize a systems-based approach to examine a large publicly available human transcriptomic dataset for HD (GSE3790 from GEO) in a novel way. We use weighted gene coexpression network analysis and differential connectivity analyses to identify transcriptional networks dysregulated in HD, and we use an unbiased ranking scheme that leverages both gene- and network-level information to identify a novel astrocyte-specific network as most relevant to HD caudate. We validate this result in an independent HD cohort. Next, we computationally predict FOXO3 as a regulator of this network, and use multiple publicly available in vitro and in vivo experimental datasets to validate that this astrocyte HD network is downstream of a signaling pathway important in adult neurogenesis (TGFß-FOXO3). We also map this HD-relevant caudate subnetwork to striatal transcriptional networks in a large (n = 100) chronically stressed (B6xA/J)F2 mouse population that has been extensively phenotyped (328 stress- and sleep-related measurements), and we show that this striatal astrocyte network is correlated to sleep and stress traits, many of which are known to be altered in HD cohorts. We identify causal regulators of this network through Bayesian network analysis, and we highlight their relevance to motor, mood, and sleep traits through multiple in silico approaches, including an examination of their protein binding partners. Finally, we show that these causal regulators may be therapeutically viable for HD because their downstream network was partially modulated by deep brain stimulation of the subthalamic nucleus, a medical intervention thought to confer some therapeutic benefit to HD patients. In conclusion, we show that an astrocyte transcriptional network is primarily associated to HD in the caudate and provide evidence for its relationship to molecular mechanisms of neural stem cell homeostasis. Furthermore, we present a unified systems-based framework for identifying gene networks that are associated with complex non-motor traits that manifest in the earliest phases of HD. By analyzing and integrating multiple independent datasets, we identify a point of molecular convergence between sleep, stress, and HD that reflects their phenotypic comorbidity and reveals a molecular pathway involved in HD progression.


Asunto(s)
Astrocitos/metabolismo , Proteína Forkhead Box O3/genética , Enfermedad de Huntington/genética , Estrés Psicológico/genética , Factor de Crecimiento Transformador beta/genética , Animales , Astrocitos/patología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiopatología , Proteína Forkhead Box O3/biosíntesis , Redes Reguladoras de Genes , Humanos , Enfermedad de Huntington/fisiopatología , Ratones , Red Nerviosa/metabolismo , Red Nerviosa/patología , Neurogénesis/genética , Transducción de Señal , Sueño/genética , Estrés Psicológico/metabolismo , Transcriptoma/genética , Factor de Crecimiento Transformador beta/biosíntesis
10.
BMC Med Inform Decis Mak ; 18(Suppl 3): 79, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30255805

RESUMEN

BACKGROUND: Worldwide, over 14% of individuals hospitalized for psychiatric reasons have readmissions to hospitals within 30 days after discharge. Predicting patients at risk and leveraging accelerated interventions can reduce the rates of early readmission, a negative clinical outcome (i.e., a treatment failure) that affects the quality of life of patient. To implement individualized interventions, it is necessary to predict those individuals at highest risk for 30-day readmission. In this study, our aim was to conduct a data-driven investigation to find the pharmacological factors influencing 30-day all-cause, intra- and interdepartmental readmissions after an index psychiatric admission, using the compendium of prescription data (prescriptome) from electronic medical records (EMR). METHODS: The data scientists in the project received a deidentified database from the Mount Sinai Data Warehouse, which was used to perform all analyses. Data was stored in a secured MySQL database, normalized and indexed using a unique hexadecimal identifier associated with the data for psychiatric illness visits. We used Bayesian logistic regression models to evaluate the association of prescription data with 30-day readmission risk. We constructed individual models and compiled results after adjusting for covariates, including drug exposure, age, and gender. We also performed digital comorbidity survey using EMR data combined with the estimation of shared genetic architecture using genomic annotations to disease phenotypes. RESULTS: Using an automated, data-driven approach, we identified prescription medications, side effects (primary side effects), and drug-drug interaction-induced side effects (secondary side effects) associated with readmission risk in a cohort of 1275 patients using prescriptome analytics. In our study, we identified 28 drugs associated with risk for readmission among psychiatric patients. Based on prescription data, Pravastatin had the highest risk of readmission (OR = 13.10; 95% CI (2.82, 60.8)). We also identified enrichment of primary side effects (n = 4006) and secondary side effects (n = 36) induced by prescription drugs in the subset of readmitted patients (n = 89) compared to the non-readmitted subgroup (n = 1186). Digital comorbidity analyses and shared genetic analyses further reveals that cardiovascular disease and psychiatric conditions are comorbid and share functional gene modules (cardiomyopathy and anxiety disorder: shared genes (n = 37; P = 1.06815E-06)). CONCLUSIONS: Large scale prescriptome data is now available from EMRs and accessible for analytics that could improve healthcare outcomes. Such analyses could also drive hypothesis and data-driven research. In this study, we explored the utility of prescriptome data to identify factors driving readmission in a psychiatric cohort. Converging digital health data from EMRs and systems biology investigations reveal a subset of patient populations that have significant comorbidities with cardiovascular diseases are more likely to be readmitted. Further, the genetic architecture of psychiatric illness also suggests overlap with cardiovascular diseases. In summary, assessment of medications, side effects, and drug-drug interactions in a clinical setting as well as genomic information using a data mining approach could help to find factors that could help to lower readmission rates in patients with mental illness.


Asunto(s)
Minería de Datos , Interacciones Farmacológicas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Trastornos Mentales/complicaciones , Trastornos Mentales/tratamiento farmacológico , Readmisión del Paciente/estadística & datos numéricos , Adulto , Anciano , Teorema de Bayes , Estudios de Cohortes , Data Warehousing , Bases de Datos Factuales , Registros Electrónicos de Salud , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Calidad de Vida , Factores de Riesgo , Factores de Tiempo
11.
Acta Neuropathol ; 134(5): 769-788, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28612290

RESUMEN

Conventional genetic approaches and computational strategies have converged on immune-inflammatory pathways as key events in the pathogenesis of late onset sporadic Alzheimer's disease (LOAD). Mutations and/or differential expression of microglial specific receptors such as TREM2, CD33, and CR3 have been associated with strong increased risk for developing Alzheimer's disease (AD). DAP12 (DNAX-activating protein 12)/TYROBP, a molecule localized to microglia, is a direct partner/adapter for TREM2, CD33, and CR3. We and others have previously shown that TYROBP expression is increased in AD patients and in mouse models. Moreover, missense mutations in the coding region of TYROBP have recently been identified in some AD patients. These lines of evidence, along with computational analysis of LOAD brain gene expression, point to DAP12/TYROBP as a potential hub or driver protein in the pathogenesis of AD. Using a comprehensive panel of biochemical, physiological, behavioral, and transcriptomic assays, we evaluated in a mouse model the role of TYROBP in early stage AD. We crossed an Alzheimer's model mutant APP KM670/671NL /PSEN1 Δexon9 (APP/PSEN1) mouse model with Tyrobp -/- mice to generate AD model mice deficient or null for TYROBP (APP/PSEN1; Tyrobp +/- or APP/PSEN1; Tyrobp -/-). While we observed relatively minor effects of TYROBP deficiency on steady-state levels of amyloid-ß peptides, there was an effect of Tyrobp deficiency on the morphology of amyloid deposits resembling that reported by others for Trem2 -/- mice. We identified modulatory effects of TYROBP deficiency on the level of phosphorylation of TAU that was accompanied by a reduction in the severity of neuritic dystrophy. TYROBP deficiency also altered the expression of several AD related genes, including Cd33. Electrophysiological abnormalities and learning behavior deficits associated with APP/PSEN1 transgenes were greatly attenuated on a Tyrobp-null background. Some modulatory effects of TYROBP on Alzheimer's-related genes were only apparent on a background of mice with cerebral amyloidosis due to overexpression of mutant APP/PSEN1. These results suggest that reduction of TYROBP gene expression and/or protein levels could represent an immune-inflammatory therapeutic opportunity for modulating early stage LOAD, potentially leading to slowing or arresting the progression to full-blown clinical and pathological LOAD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Alzheimer/genética , Encéfalo/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Mutación , Fosforilación , Proteínas tau/metabolismo
12.
Res Sq ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37886447

RESUMEN

Maintenance of astronaut health during spaceflight will require monitoring and potentially modulating their microbiomes, which play a role in some space-derived health disorders. However, documenting the response of microbiota to spaceflight has been difficult thus far due to mission constraints that lead to limited sampling. Here, we executed a six-month longitudinal study centered on a three-day flight to quantify the high-resolution microbiome response to spaceflight. Via paired metagenomics and metatranscriptomics alongside single immune profiling, we resolved a microbiome "architecture" of spaceflight characterized by time-dependent and taxonomically divergent microbiome alterations across 750 samples and ten body sites. We observed pan-phyletic viral activation and signs of persistent changes that, in the oral microbiome, yielded plaque-associated pathobionts with strong associations to immune cell gene expression. Further, we found enrichments of microbial genes associated with antibiotic production, toxin-antitoxin systems, and stress response enriched universally across the body sites. We also used strain-level tracking to measure the potential propagation of microbial species from the crew members to each other and the environment, identifying microbes that were prone to seed the capsule surface and move between the crew. Finally, we identified associations between microbiome and host immune cell shifts, proposing both a microbiome axis of immune changes during flight as well as the sources of some of those changes. In summary, these datasets and methods reveal connections between crew immunology, the microbiome, and their likely drivers and lay the groundwork for future microbiome studies of spaceflight.

13.
Curr Opin Pharmacol ; 60: 59-65, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34352486

RESUMEN

Neurodegenerative diseases (NDDs) encompass a wide range of conditions that arise owing to progressive degeneration and the ultimate loss of nerve cells in the brain and peripheral nervous system. NDDs such as Alzheimer's, Parkinson's, and Huntington's diseases negatively impact both length and quality of life, due to lack of effective disease-modifying treatments. Herein, we review the use of genome-scale metabolic models, network-based approaches, and integration with multiomics data to identify key biological processes that characterize NDDs. We describe powerful systems biology approaches for modeling NDD pathophysiology by leveraging in silico models that are informed by patient-derived multiomics data. These approaches can enable mechanistic insights into NDD-specific metabolic dysregulations that can be leveraged to identify potential metabolic markers of disease and predisease states.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Encéfalo , Humanos , Calidad de Vida , Biología de Sistemas
14.
Nat Rev Neurol ; 16(4): 193-197, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32152461

RESUMEN

The idea that infectious agents in the brain have a role in the pathogenesis of Alzheimer disease (AD) was proposed nearly 30 years ago. However, this theory failed to gain substantial traction and was largely disregarded by the AD research community for many years. Several recent discoveries have reignited interest in the infectious theory of AD, culminating in a debate on the topic at the Alzheimer's Association International Conference (AAIC) in July 2019. In this Viewpoint article, experts who participated in the AAIC debate weigh up the evidence for and against the infectious theory of AD and suggest avenues for future research and drug development.


Asunto(s)
Enfermedad de Alzheimer/microbiología , Encéfalo/microbiología , Infecciones/microbiología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Borrelia burgdorferi , Chlamydophila pneumoniae , Herpesvirus Humano 1 , Herpesvirus Humano 6 , Herpesvirus Humano 7 , Humanos , Infecciones/complicaciones , Porphyromonas gingivalis
15.
Oncotarget ; 11(4): 409-418, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32064044

RESUMEN

Topical glucocorticoids, well-known anti-inflammatory drugs, induce multiple adverse effects, including skin atrophy. The sex-specific effects of systemic glucocorticoids are known, but sexual dimorphism of therapeutic and side effects of topical steroids has not been studied. We report here that female and male mice were equally sensitive to the anti-inflammatory effect of glucocorticoid fluocinolone acetonide (FA) in ear edema test. At the same time, females were more sensitive to FA-induced skin atrophy. We recently reported that REDD1 (regulated in development and DNA damage 1) plays central role in steroid atrophy. We found that REDD1 was more efficiently activated by FA in females, and that REDD1 knockout significantly protected female but not male mice from skin atrophy. Studies using human keratinocytes revealed that both estradiol and FA induced REDD1 mRNA/protein expression, and cooperated when they were combined at low doses. Chromatin immunoprecipitation analysis confirmed that REDD1 is an estrogen receptor (ER) target gene with multiple estrogen response elements in its promoter. Moreover, experiments with GR and ER inhibitors suggested that REDD1 induction by these hormones was interdependent on functional activity of both receptors. Overall, our results are important for the development of safer GR-targeted therapies suited for female and male dermatological patients.

16.
Mol Cancer Ther ; 19(9): 1898-1908, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32546661

RESUMEN

Glucocorticoids are widely used for therapy of hematologic malignancies. Unfortunately, chronic treatment with glucocorticoids commonly leads to adverse effects including skin and muscle atrophy and osteoporosis. We found recently that REDD1 (regulated in development and DNA damage 1) plays central role in steroid atrophy. Here, we tested whether REDD1 suppression makes glucocorticoid-based therapy of blood cancer safer. Unexpectedly, approximately 50% of top putative REDD1 inhibitors selected by bioinformatics screening of Library of Integrated Network-Based Cellular Signatures database (LINCS) were PI3K/Akt/mTOR inhibitors. We selected Wortmannin, LY294002, and AZD8055 for our studies and showed that they blocked basal and glucocorticoid-induced REDD1 expression. Moreover, all PI3K/mTOR/Akt inhibitors modified glucocorticoid receptor function shifting it toward therapeutically important transrepression. PI3K/Akt/mTOR inhibitors enhanced anti-lymphoma effects of Dexamethasone in vitro and in vivo, in lymphoma xenograft model. The therapeutic effects of PI3K inhibitor+Dexamethasone combinations ranged from cooperative to synergistic, especially in case of LY294002 and Rapamycin, used as a previously characterized reference REDD1 inhibitor. We found that coadministration of LY294002 or Rapamycin with Dexamethasone protected skin against Dexamethasone-induced atrophy, and normalized RANKL/OPG ratio indicating a reduction of Dexamethasone-induced osteoporosis. Together, our results provide foundation for further development of safer and more effective glucocorticoid-based combination therapy of hematologic malignancies using PI3K/Akt/mTOR inhibitors.


Asunto(s)
Glucocorticoides/uso terapéutico , Linfoma/tratamiento farmacológico , Receptores de Glucocorticoides/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Femenino , Glucocorticoides/farmacología , Humanos , Ratones
17.
Schizophr Res ; 207: 12-21, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30442475

RESUMEN

Childhood critical periods of experience-dependent plasticity are essential for the development of environmentally appropriate behavior and cognition. Disruption of critical periods can alter development of normal function and confer risk for neurodevelopmental disorders. While genes and their expression relevant to neurodevelopment are associated with schizophrenia, the molecular relationship between schizophrenia and critical periods has not been assessed systematically. Here, we apply a transcriptome-based bioinformatics approach to assess whether genes associated with the human critical period for visual cortex plasticity, a well-studied model of cortical critical periods, are aberrantly expressed in schizophrenia and bipolar disorder. Across two dozen datasets encompassing 522 cases and 374 controls, we find that the majority show aberrations in expression of genes associated with the critical period. We observed both hyper- and hypo-critical period plasticity phenotypes at the transcriptome level, which partially mapped to drug candidates that reverse the disorder signatures in silico. Our findings indicate plasticity aberrations in schizophrenia and their treatment may need to be considered in the context of subpopulations with elevated and others reduced plasticity. Future work should leverage ongoing consortia RNA-sequencing efforts to tease out the sources of plasticity-related transcriptional aberrations seen in schizophrenia, including true biological heterogeneity, interaction between normal development/aging and the disorder, and medication history. Our study also urges innovation towards direct assessment of visual cortex plasticity in humans with schizophrenia to precisely deconstruct the role of plasticity in this disorder.


Asunto(s)
Trastorno Bipolar/genética , Corteza Cerebral/metabolismo , Desarrollo Humano , Plasticidad Neuronal/genética , Esquizofrenia/genética , Transcriptoma , Animales , Trastorno Bipolar/tratamiento farmacológico , Corteza Cerebral/efectos de los fármacos , Biología Computacional , Conjuntos de Datos como Asunto , Reposicionamiento de Medicamentos , Haplorrinos , Humanos , Ratones , Plasticidad Neuronal/efectos de los fármacos , Esquizofrenia/tratamiento farmacológico , Factores de Tiempo
18.
EBioMedicine ; 41: 526-537, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30737086

RESUMEN

BACKGROUND: Skin atrophy is a major adverse effect of topical glucocorticoids. We recently reported that REDD1 (regulated in development and DNA damage 1) and FKBP51 (FK506 binding protein 5), negative regulators of mTOR/Akt signaling, are induced by glucocorticoids in mouse and human skin and are central drivers of steroid skin atrophy. Thus, we hypothesized that REDD1/FKBP51 inhibitors could protect skin against catabolic effects of glucocorticoids. METHODS: Using drug repurposing approach, we screened LINCS library (http://lincsproject.org/LINCS/) to identify repressors of REDD1/FKBP51 expression. Candidate compounds were tested for their ability to inhibit glucocorticoid-induced REDD1/FKBP51 expression in human primary/immortalized keratinocytes and in mouse skin. Reporter gene expression, microarray, and chromatin immunoprecipitation were employed to evaluate effect of these inhibitors on the glucocorticoid receptor (GR) signaling. FINDINGS: Bioinformatics analysis unexpectedly identified phosphoinositide-3-kinase (PI3K)/mTOR/Akt inhibitors as a pharmacological class of REDD1/FKBP51 repressors. Selected PI3K/mTOR/Akt inhibitors-Wortmannin (WM), LY294002, AZD8055, and two others indeed blocked REDD1/FKBP51expression in human keratinocytes. PI3K/mTOR/Akt inhibitors also modified global effect of glucocorticoids on trascriptome, shifting it towards therapeutically important transrepression; negatively impacted GR phosphorylation; nuclear translocation; and GR loading on REDD1/FKBP51 gene promoters. Further, topical application of LY294002 together with glucocorticoid fluocinolone acetonide (FA) protected mice against FA-induced proliferative block and skin atrophy but did not alter the anti-inflammatory activity of FA in ear edema test. INTERPRETATION: Our results built a strong foundation for development of safer GR-targeted therapies for inflammatory skin diseases using combination of glucocorticoids with PI3K/mTOR/Akt inhibitors. FUND: Work is supported by NIH grants R01GM112945, R01AI125366, and HESI-THRIVE foundation.


Asunto(s)
Glucocorticoides/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Piel/efectos de los fármacos , Animales , Atrofia , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Glucocorticoides/metabolismo , Piel/patología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Unión a Tacrolimus/antagonistas & inhibidores , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/efectos de los fármacos , Wortmanina/farmacología
19.
Circ Genom Precis Med ; 12(6): e002390, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31059280

RESUMEN

BACKGROUND: Antiretroviral therapy (ART) for HIV infection increases risk for coronary artery disease (CAD), presumably by causing dyslipidemia and increased atherosclerosis. We applied systems pharmacology to identify and validate specific regulatory gene networks through which ART drugs may promote CAD. METHODS: Transcriptional responses of human cell lines to 15 ART drugs retrieved from the Library of Integrated Cellular Signatures (overall 1127 experiments) were used to establish consensus ART gene/transcriptional signatures. Next, enrichments of differentially expressed genes and gene-gene connectivity within these ART-consensus signatures were sought in 30 regulatory gene networks associated with CAD and CAD-related phenotypes in the Stockholm Atherosclerosis Gene Expression study. RESULTS: Ten of 15 ART signatures were significantly enriched both for differential expression and connectivity in a specific atherosclerotic arterial wall regulatory gene network (AR-RGN) causal for CAD involving RNA processing genes. An atherosclerosis in vitro model of cholestryl ester-loaded foam cells was then used for experimental validation. Treatments of these foam cells with ritonavir, nelfinavir, and saquinavir at least doubled cholestryl ester accumulation ( P=0.02, 0.0009, and 0.02, respectively), whereas RNA silencing of the AR-RGN top key driver, PQBP1 (polyglutamine binding protein 1), significantly curbed cholestryl ester accumulation following treatment with any of these ART drugs by >37% ( P<0.05). CONCLUSIONS: By applying a novel systems pharmacology data analysis framework, 3 commonly used ARTs (ritonavir, nelfinavir, and saquinavir) were found altering the activity of AR-RGN, a regulatory gene network promoting foam cell formation and risk of CAD. Targeting AR-RGN or its top key driver PQBP1 may help reduce CAD side effects of these ART drugs.


Asunto(s)
Antirretrovirales/farmacología , Enfermedad de la Arteria Coronaria/genética , Proteínas de Unión al ADN/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Antirretrovirales/efectos adversos , Arterias/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , Ésteres del Colesterol/sangre , Ésteres del Colesterol/genética , Enfermedad de la Arteria Coronaria/metabolismo , Proteínas de Unión al ADN/genética , Bases de Datos de Ácidos Nucleicos , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Infecciones por VIH/tratamiento farmacológico , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Nelfinavir/efectos adversos , Nelfinavir/farmacología , Ritonavir/efectos adversos , Ritonavir/farmacología , Saquinavir/efectos adversos , Saquinavir/farmacología , Células THP-1
20.
Nat Commun ; 10(1): 3834, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444360

RESUMEN

Transcriptome-wide association studies integrate gene expression data with common risk variation to identify gene-trait associations. By incorporating epigenome data to estimate the functional importance of genetic variation on gene expression, we generate a small but significant improvement in the accuracy of transcriptome prediction and increase the power to detect significant expression-trait associations. Joint analysis of 14 large-scale transcriptome datasets and 58 traits identify 13,724 significant expression-trait associations that converge on biological processes and relevant phenotypes in human and mouse phenotype databases. We perform drug repurposing analysis and identify compounds that mimic, or reverse, trait-specific changes. We identify genes that exhibit agonistic pleiotropy for genetically correlated traits that converge on shared biological pathways and elucidate distinct processes in disease etiopathogenesis. Overall, this comprehensive analysis provides insight into the specificity and convergence of gene expression on susceptibility to complex traits.


Asunto(s)
Epigenómica/métodos , Perfilación de la Expresión Génica/métodos , Pleiotropía Genética , Predisposición Genética a la Enfermedad , Sitios de Carácter Cuantitativo , Animales , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Humanos , Ratones , Modelos Genéticos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA