Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100643, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33862086

RESUMEN

Coenzyme Q (CoQ), a redox-active lipid essential for oxidative phosphorylation, is synthesized by virtually all cells, but how eukaryotes make the universal CoQ head group precursor 4-hydroxybenzoate (4-HB) from tyrosine is unknown. The first and last steps of this pathway have been defined in Saccharomyces cerevisiae, but the intermediates and enzymes involved in converting 4-hydroxyphenylpyruvate (4-HPP) to 4-hydroxybenzaldehyde (4-HBz) have not been described. Here, we interrogate this pathway with genetic screens, targeted LC-MS, and chemical genetics. We identify three redundant aminotransferases (Bna3, Bat2, and Aat2) that support CoQ biosynthesis in the absence of the established pathway tyrosine aminotransferases, Aro8 and Aro9. We use isotope labeling to identify bona fide tyrosine catabolites, including 4-hydroxyphenylacetate (4-HPA) and 4-hydroxyphenyllactate (4-HPL). Additionally, we find multiple compounds that rescue this pathway when exogenously supplemented, most notably 4-hydroxyphenylacetaldehyde (4-HPAA) and 4-hydroxymandelate (4-HMA). Finally, we show that the Ehrlich pathway decarboxylase Aro10 is dispensable for 4-HB production. These results define new features of 4-HB synthesis in yeast, demonstrate the redundant nature of this pathway, and provide a foundation for further study.


Asunto(s)
Parabenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transaminasas/metabolismo , Tirosina/metabolismo , Ubiquinona/análogos & derivados , Oxidación-Reducción , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transaminasas/genética , Ubiquinona/metabolismo
2.
Am J Respir Cell Mol Biol ; 62(6): 783-792, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32078788

RESUMEN

Polymorphism at the 17q21 gene locus and wheezing responses to rhinovirus (RV) early in childhood conspire to increase the risk of developing asthma. However, the mechanisms mediating this gene-environment interaction remain unclear. In this study, we investigated the impact of one of the 17q21-encoded genes, ORMDL3 (orosomucoid-like 3), on RV replication in human epithelial cells. ORMDL3 knockdown inhibited RV-A16 replication in HeLa, BEAS-2B, A549, and NCI-H358 epithelial cell lines and primary nasal and bronchial epithelial cells. Inhibition varied by RV species, as both minor and major group RV-A subtypes RV-B52 and RV-C2 were inhibited but not RV-C15 or RV-C41. ORMDL3 siRNA did not affect expression of the major group RV-A receptor ICAM-1 or initial internalization of RV-A16. The two major outcomes of ORMDL3 activity, SPT (serine palmitoyl-CoA transferase) inhibition and endoplasmic reticulum (ER) stress induction, were further examined: silencing ORMDL3 decreased RV-induced ER stress and IFN-ß mRNA expression. However, pharmacologic induction of ER stress and concomitant increased IFN-ß inhibited RV-A16 replication. Conversely, blockade of ER stress with tauroursodeoxycholic acid augmented replication, pointing to an alternative mechanism for the effect of ORMDL3 knockdown on RV replication. In comparison, the SPT inhibitor myriocin increased RV-A16 but not RV-C15 replication and negated the inhibitory effect of ORMDL3 knockdown. Furthermore, lipidomics analysis revealed opposing regulation of specific sphingolipid species (downstream of SPT) by myriocin and ORMDL3 siRNA, correlating with the effect of these treatments on RV replication. Together, these data revealed a requirement for ORMDL3 in supporting RV replication in epithelial cells via SPT inhibition.


Asunto(s)
Células Epiteliales/virología , Proteínas de la Membrana/fisiología , Rhinovirus/fisiología , Replicación Viral , Células A549 , Asma/etiología , Bronquios/citología , Células Cultivadas , Cromosomas Humanos Par 17/genética , Estrés del Retículo Endoplásmico , Ácidos Grasos Monoinsaturados/farmacología , Predisposición Genética a la Enfermedad , Genotipo , Células HeLa , Humanos , Interferón beta/biosíntesis , Interferón beta/genética , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Mucosa Nasal/citología , Infecciones por Picornaviridae/complicaciones , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Recombinantes/metabolismo , Rhinovirus/genética , Serina C-Palmitoiltransferasa/antagonistas & inhibidores , Serina C-Palmitoiltransferasa/metabolismo , Esfingolípidos/metabolismo , Ácido Tauroquenodesoxicólico/farmacología , Replicación Viral/efectos de los fármacos
3.
J Cell Biol ; 218(4): 1353-1369, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30674579

RESUMEN

Coenzyme Q (CoQ) lipids are ancient electron carriers that, in eukaryotes, function in the mitochondrial respiratory chain. In mitochondria, CoQ lipids are built by an inner membrane-associated, multicomponent, biosynthetic pathway via successive steps of isoprenyl tail polymerization, 4-hydroxybenzoate head-to-tail attachment, and head modification, resulting in the production of CoQ. In yeast, we discovered that head-modifying CoQ pathway components selectively colocalize to multiple resolvable domains in vivo, representing supramolecular assemblies. In cells engineered with conditional ON or OFF CoQ pathways, domains were strictly correlated with CoQ production and substrate flux, respectively, indicating that CoQ lipid intermediates are required for domain formation. Mitochondrial CoQ domains were also observed in human cells, underscoring their conserved functional importance. CoQ domains within cells were highly enriched adjacent to ER-mitochondria contact sites. Together, our data suggest that CoQ domains function to facilitate substrate accessibility for processive and efficient CoQ production and distribution in cells.


Asunto(s)
Retículo Endoplásmico/enzimología , Enzimas/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Ubiquinona/biosíntesis , Línea Celular Tumoral , Retículo Endoplásmico/genética , Enzimas/genética , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Complejos Multienzimáticos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Ubiquinona/genética , Ubiquinona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA