Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Appl ; 31(2): e2242, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33098736

RESUMEN

Spatial gradients in population growth, such as across latitudinal or elevational gradients, are often assumed to primarily be driven by variation in climate, and are frequently used to infer species' responses to climate change. Here, we use a novel demographic, mixed-model approach to dissect the contributions of climate variables vs. other latitudinal or local site effects on spatiotemporal variation in population performance in three perennial bunchgrasses. For all three species, we find that performance of local populations decreases with warmer and drier conditions, despite latitudinal trends of decreasing population growth toward the cooler and wetter northern portion of each species' range. Thus, latitudinal gradients in performance are not predictive of either local or species-wide responses to climate. This pattern could be common, as many environmental drivers, such as habitat quality or species' interactions, are likely to vary with latitude or elevation, and thus influence or oppose climate responses.


Asunto(s)
Cambio Climático , Crecimiento Demográfico , Ecosistema
2.
Plant Environ Interact ; 4(2): 97-113, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37288163

RESUMEN

Danthonia californica Bolander (Poaceae)is a native perennial bunchgrass commonly used in the restoration of prairie ecosystems in the western United States. Plants of this species simultaneously produce both chasmogamous (potentially outcrossed) and cleistogamous (obligately self-fertilized) seeds. Restoration practitioners almost exclusively use chasmogamous seeds for outplanting, which are predicted to perform better in novel environments due to their greater genetic diversity. Meanwhile, cleistogamous seeds may exhibit greater local adaptation to the conditions in which the maternal plant exists. We performed a common garden experiment at two sites in the Willamette Valley, Oregon, to assess the influence of seed type and source population (eight populations from a latitudinal gradient) on seedling emergence and found no evidence of local adaptation for either seed type. Cleistogamous seeds outperformed chasmogamous seeds, regardless of whether seeds were sourced directly from the common gardens (local seeds) or other populations (nonlocal seeds). Furthermore, average seed weight had a strong positive effect on seedling emergence, despite the fact that chasmogamous seeds had significantly greater mass than cleistogamous seeds. At one common garden, we observed that seeds of both types sourced from north of our planting site performed significantly better than local or southern-sourced seeds. We also found a significant seed type and distance-dependent interaction, with cleistogamous seedling emergence peaking approximately 125 km from the garden. These results suggest that cleistogamous seeds should be considered for greater use in D. californica restoration.

3.
Ecology ; 102(10): e03464, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34236709

RESUMEN

With ongoing climate change, populations are expected to exhibit shifts in demographic performance that will alter where a species can persist. This presents unique challenges for managing plant populations and may require ongoing interventions, including in situ management or introduction into new locations. However, few studies have examined how climate change may affect plant demographic performance for a suite of species, or how effective management actions could be in mitigating climate change effects. Over the course of two experiments spanning 6 yr and four sites across a latitudinal gradient in the Pacific Northwest, United States, we manipulated temperature, precipitation, and disturbance intensity, and quantified effects on the demography of eight native annual prairie species. Each year we planted seeds and monitored germination, survival, and reproduction. We found that disturbance strongly influenced demographic performance and that seven of the eight species had increasingly poor performance with warmer conditions. Across species and sites, we observed 11% recruitment (the proportion of seeds planted that survived to reproduction) following high disturbance, but just 3.9% and 2.3% under intermediate and low disturbance, respectively. Moreover, mean seed production following high disturbance was often more than tenfold greater than under intermediate and low disturbance. Importantly, most species exhibited precipitous declines in their population growth rates (λ) under warmer-than-ambient experimental conditions and may require more frequent disturbance intervention to sustain populations. Aristida oligantha, a C4 grass, was the only species to have λ increase with warmer conditions. These results suggest that rising temperatures may cause many native annual plant species to decline, highlighting the urgency for adaptive management practices that facilitate their restoration or introduction to newly suitable locations. Frequent and intense disturbances are critical to reduce competitors and promote native annuals' persistence, but even such efforts may prove futile under future climate regimes.


Asunto(s)
Cambio Climático , Plantas , Adaptación Fisiológica , Germinación , Temperatura
4.
Ecol Evol ; 9(6): 3637-3650, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30962915

RESUMEN

Plant phenology will likely shift with climate change, but how temperature and/or moisture regimes will control phenological responses is not well understood. This is particularly true in Mediterranean climate ecosystems where the warmest temperatures and greatest moisture availability are seasonally asynchronous. We examined plant phenological responses at both the population and community levels to four climate treatments (control, warming, drought, and warming plus additional precipitation) embedded within three prairies across a 520 km latitudinal Mediterranean climate gradient within the Pacific Northwest, USA. At the population level, we monitored flowering and abundances in spring 2017 of eight range-restricted focal species planted both within and north of their current ranges. At the community level, we used normalized difference vegetation index (NDVI) measured from fall 2016 to summer 2018 to estimate peak live biomass, senescence, seasonal patterns, and growing season length. We found that warming exerted a stronger control than our moisture manipulations on phenology at both the population and community levels. Warming advanced flowering regardless of whether a species was within or beyond its current range. Importantly, many of our focal species had low abundances, particularly in the south, suggesting that establishment, in addition to phenological shifts, may be a strong constraint on their future viability. At the community level, warming advanced the date of peak biomass regardless of site or year. The date of senescence advanced regardless of year for the southern and central sites but only in 2018 for the northern site. Growing season length contracted due to warming at the southern and central sites (~3 weeks) but was unaffected at the northern site. Our results emphasize that future temperature changes may exert strong influence on the timing of a variety of plant phenological events, especially those events that occur when temperature is most limiting, even in seasonally water-limited Mediterranean ecosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA