Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 187(12): 3090-3107.e21, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38749423

RESUMEN

Platelet dysregulation is drastically increased with advanced age and contributes to making cardiovascular disorders the leading cause of death of elderly humans. Here, we reveal a direct differentiation pathway from hematopoietic stem cells into platelets that is progressively propagated upon aging. Remarkably, the aging-enriched platelet path is decoupled from all other hematopoietic lineages, including erythropoiesis, and operates as an additional layer in parallel with canonical platelet production. This results in two molecularly and functionally distinct populations of megakaryocyte progenitors. The age-induced megakaryocyte progenitors have a profoundly enhanced capacity to engraft, expand, restore, and reconstitute platelets in situ and upon transplantation and produce an additional platelet population in old mice. The two pools of co-existing platelets cause age-related thrombocytosis and dramatically increased thrombosis in vivo. Strikingly, aging-enriched platelets are functionally hyper-reactive compared with the canonical platelet populations. These findings reveal stem cell-based aging as a mechanism for platelet dysregulation and age-induced thrombosis.


Asunto(s)
Envejecimiento , Plaquetas , Diferenciación Celular , Células Madre Hematopoyéticas , Trombosis , Animales , Células Madre Hematopoyéticas/metabolismo , Plaquetas/metabolismo , Trombosis/patología , Trombosis/metabolismo , Ratones , Humanos , Megacariocitos/metabolismo , Ratones Endogámicos C57BL , Células Progenitoras de Megacariocitos/metabolismo , Masculino
2.
Stem Cells ; 41(5): 520-539, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36945732

RESUMEN

Epigenetic mechanisms regulate the multilineage differentiation capacity of hematopoietic stem cells (HSCs) into a variety of blood and immune cells. Mapping the chromatin dynamics of functionally defined cell populations will shed mechanistic insight into 2 major, unanswered questions in stem cell biology: how does epigenetic identity contribute to a cell type's lineage potential, and how do cascades of chromatin remodeling dictate ensuing fate decisions? Our recent work revealed evidence of multilineage gene priming in HSCs, where open cis-regulatory elements (CREs) exclusively shared between HSCs and unipotent lineage cells were enriched for DNA binding motifs of known lineage-specific transcription factors. Oligopotent progenitor populations operating between the HSCs and unipotent cells play essential roles in effecting hematopoietic homeostasis. To test the hypothesis that selective HSC-primed lineage-specific CREs remain accessible throughout differentiation, we used ATAC-seq to map the temporal dynamics of chromatin remodeling during progenitor differentiation. We observed epigenetic-driven clustering of oligopotent and unipotent progenitors into distinct erythromyeloid and lymphoid branches, with multipotent HSCs and MPPs associating with the erythromyeloid lineage. We mapped the dynamics of lineage-primed CREs throughout hematopoiesis and identified both unique and shared CREs as potential lineage reinforcement mechanisms at fate branch points. Additionally, quantification of genome-wide peak count and size revealed overall greater chromatin accessibility in HSCs, allowing us to identify HSC-unique peaks as putative regulators of self-renewal and multilineage potential. Finally, CRISPRi-mediated targeting of ATACseq-identified putative CREs in HSCs allowed us to demonstrate the functional role of selective CREs in lineage-specific gene expression. These findings provide insight into the regulation of stem cell multipotency and lineage commitment throughout hematopoiesis and serve as a resource to test functional drivers of hematopoietic lineage fate.


Asunto(s)
Cromatina , Hematopoyesis , Cromatina/genética , Cromatina/metabolismo , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética
3.
Adv Exp Med Biol ; 1363: 121-145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35220568

RESUMEN

Long noncoding RNAs (lncRNAs) are promising candidates as biomarkers of inflammation and cancer. LncRNAs have several properties that make them well-suited as molecular markers of disease: (1) many lncRNAs are expressed in a tissue-specific manner, (2) distinct lncRNAs are upregulated based on different inflammatory or oncogenic stimuli, (3) lncRNAs released from cells are packaged and protected in extracellular vesicles, and (4) circulating lncRNAs in the blood are detectable using various RNA sequencing approaches. Here we focus on the potential for lncRNA biomarkers to detect inflammation and cancer, highlighting key biological, technological, and analytical considerations that will help advance the development of lncRNA-based liquid biopsies.


Asunto(s)
Vesículas Extracelulares , Neoplasias , ARN Largo no Codificante , Biomarcadores , Biomarcadores de Tumor/genética , Humanos , Inflamación/genética , Neoplasias/genética , ARN Largo no Codificante/genética
4.
bioRxiv ; 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36909578

RESUMEN

Mutant KRAS regulates transposable element (TE) RNA and interferon-stimulated gene (ISG) expression, but it remains unclear whether diverse mutations in KRAS affect different TE RNAs throughout the genome. We analyzed the transcriptomes of 3D human lung cancer spheroids that harbor KRAS(G12C) mutations to determine the landscape of TE RNAs regulated by mutant KRAS(G12C). We found that KRAS(G12C) signaling is required for the expression of LINE- and LTR-derived TE RNAs that are distinct from TE RNAs previously shown to be regulated by mutant KRAS(G12D) or KRAS(G12V). Moreover, KRAS(G12C) inhibition specifically upregulates SINE-derived TE RNAs from the youngest Alu subfamily AluY. Our results reveal that TE RNA dysregulation in KRAS-driven lung cancer cells is mutation-dependent, while also highlighting a subset of young, Alu-derived TE RNAs that are coordinately activated with innate immunity genes upon KRAS(G12C) inhibition.

5.
Nat Biomed Eng ; 7(12): 1627-1635, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37652985

RESUMEN

Liquid biopsies provide a means for the profiling of cell-free RNAs secreted by cells throughout the body. Although well-annotated coding and non-coding transcripts in blood are readily detectable and can serve as biomarkers of disease, the overall diagnostic utility of the cell-free transcriptome remains unclear. Here we show that RNAs derived from transposable elements and other repeat elements are enriched in the cell-free transcriptome of patients with cancer, and that they serve as signatures for the accurate classification of the disease. We used repeat-element-aware liquid-biopsy technology and single-molecule nanopore sequencing to profile the cell-free transcriptome in plasma from patients with cancer and to examine millions of genomic features comprising all annotated genes and repeat elements throughout the genome. By aggregating individual repeat elements to the subfamily level, we found that samples with pancreatic cancer are enriched with specific Alu subfamilies, whereas other cancers have their own characteristic cell-free RNA profile. Our findings show that repetitive RNA sequences are abundant in blood and can be used as disease-specific diagnostic biomarkers.


Asunto(s)
Neoplasias , ARN , Humanos , ARN/genética , Secuencia de Bases , Elementos Transponibles de ADN , Plasma , Neoplasias/diagnóstico , Neoplasias/genética , Biomarcadores
6.
Cell Rep ; 40(3): 111104, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858545

RESUMEN

RAS genes are the most frequently mutated oncogenes in cancer, yet the effects of oncogenic RAS signaling on the noncoding transcriptome remain unclear. We analyzed the transcriptomes of human airway and bronchial epithelial cells transformed with mutant KRAS to define the landscape of KRAS-regulated noncoding RNAs. We find that oncogenic KRAS signaling upregulates noncoding transcripts throughout the genome, many of which arise from transposable elements (TEs). These TE RNAs exhibit differential expression, are preferentially released in extracellular vesicles, and are regulated by KRAB zinc-finger (KZNF) genes, which are broadly downregulated in mutant KRAS cells and lung adenocarcinomas in vivo. Moreover, mutant KRAS induces an intrinsic IFN-stimulated gene (ISG) signature that is often seen across many different cancers. Our results indicate that mutant KRAS remodels the repetitive noncoding transcriptome, demonstrating the broad scope of intracellular and extracellular RNAs regulated by this oncogenic signaling pathway.


Asunto(s)
Elementos Transponibles de ADN , Genes ras , Línea Celular Tumoral , Elementos Transponibles de ADN/genética , Humanos , Inmunidad Innata/genética , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , ARN , Zinc
7.
Epigenetics Chromatin ; 14(1): 2, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407811

RESUMEN

Hematopoietic stem cells (HSCs) have the capacity to differentiate into vastly different types of mature blood cells. The epigenetic mechanisms regulating the multilineage ability, or multipotency, of HSCs are not well understood. To test the hypothesis that cis-regulatory elements that control fate decisions for all lineages are primed in HSCs, we used ATAC-seq to compare chromatin accessibility of HSCs with five unipotent cell types. We observed the highest similarity in accessibility profiles between megakaryocyte progenitors and HSCs, whereas B cells had the greatest number of regions with de novo gain in accessibility during differentiation. Despite these differences, we identified cis-regulatory elements from all lineages that displayed epigenetic priming in HSCs. These findings provide new insights into the regulation of stem cell multipotency, as well as a resource to identify functional drivers of lineage fate.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Diferenciación Celular , Cromatina/genética , Secuencias Reguladoras de Ácidos Nucleicos
8.
J Neuroendocrinol ; 31(1): e12670, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30561082

RESUMEN

Energy stores in fat tissue are determined in part by the activity of hypothalamic neurones expressing the melanocortin-4 receptor (MC4R). Even a partial reduction in MC4R expression levels in mice, rats or humans produces hyperphagia and morbid obesity. Thus, it is of great interest to understand the molecular basis of neuromodulation by the MC4R. The MC4R is a G protein-coupled receptor that signals efficiently through GαS , and this signalling pathway is essential for normal MC4R function in vivo. However, previous data from hypothalamic slice preparations indicated that activation of the MC4R depolarised neurones via G protein-independent regulation of the ion channel Kir7.1. In the present study, we show that deletion of Kcnj13 (ie, the gene encoding Kir7.1) specifically from MC4R neurones produced resistance to melanocortin peptide-induced depolarisation of MC4R paraventricular nucleus neurones in brain slices, resistance to the sustained anorexic effect of exogenously administered melanocortin peptides, late onset obesity, increased linear growth and glucose intolerance. Some MC4R-mediated phenotypes appeared intact, including Agouti-related peptide-induced stimulation of food intake and MC4R-mediated induction of peptide YY release from intestinal L cells. Thus, a subset of the consequences of MC4R signalling in vivo appears to be dependent on expression of the Kir7.1 channel in MC4R cells.


Asunto(s)
Hipotálamo/fisiopatología , Neuronas/fisiología , Obesidad/fisiopatología , Canales de Potasio de Rectificación Interna/fisiología , Receptor de Melanocortina Tipo 4/fisiología , Animales , Conducta Alimentaria/fisiología , Femenino , Masculino , Potenciales de la Membrana , Ratones Endogámicos C57BL , Ratones Noqueados , Canales de Potasio de Rectificación Interna/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA