Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(16): 161803, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37925712

RESUMEN

Optical frequency metrology in atoms and ions can probe hypothetical fifth forces between electrons and neutrons by sensing minute perturbations of the electronic wave function induced by them. A generalized King plot has been proposed to distinguish them from possible standard model effects arising from, e.g., finite nuclear size and electronic correlations. Additional isotopes and transitions are required for this approach. Xenon is an excellent candidate, with seven stable isotopes with zero nuclear spin, however it has no known visible ground-state transitions for high resolution spectroscopy. To address this, we have found and measured twelve magnetic-dipole lines in its highly charged ions and theoretically studied their sensitivity to fifth forces as well as the suppression of spurious higher-order standard model effects. Moreover, we identified at 764.8753(16) nm a E2-type ground-state transition with 500 s excited state lifetime as a potential clock candidate further enhancing our proposed scheme.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA