Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(11): 113003, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774298

RESUMEN

We have studied the stability of the smallest long-lived all carbon molecular dianion (C_{7}^{2-}) in new time domains and with a single ion at a time using a cryogenic electrostatic ion-beam storage ring. We observe spontaneous electron emission from internally excited dianions on millisecond timescales and monitor the survival of single colder C_{7}^{2-} molecules on much longer timescales. We find that their intrinsic lifetime exceeds several minutes-6 orders of magnitude longer than established from earlier experiments on C_{7}^{2-}. This is consistent with our calculations of vertical electron detachment energies predicting one inherently stable isomer and one isomer which is stable or effectively stable behind a large Coulomb barrier for C_{7}^{2-}→C_{7}^{-}+e^{-} separation.

2.
Phys Rev Lett ; 121(7): 079901, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30169079

RESUMEN

This corrects the article DOI: 10.1103/PhysRevLett.119.073001.

3.
Phys Rev Lett ; 119(7): 073001, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28949695

RESUMEN

We apply near-threshold laser photodetachment to characterize the rotational quantum level distribution of OH^{-} ions stored in the cryogenic ion-beam storage ring DESIREE at Stockholm University. We find that the stored ions relax to a rotational temperature of 13.4±0.2 K with 94.9±0.3% of the ions in the rotational ground state. This is consistent with the storage ring temperature of 13.5±0.5 K as measured with eight silicon diodes but in contrast to all earlier studies in cryogenic traps and rings where the rotational temperatures were always much higher than those of the storage devices at their lowest temperatures. Furthermore, we actively modify the rotational distribution through selective photodetachment to produce an OH^{-} beam where 99.1±0.1% of approximately one million stored ions are in the J=0 rotational ground state. We measure the intrinsic lifetime of the J=1 rotational level to be 145±28 s.

4.
Phys Rev Lett ; 114(14): 143003, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25910117

RESUMEN

We use a novel electrostatic ion storage ring to measure the radiative lifetime of the upper level in the 3p^{5} ^{2}P_{1/2}^{o}→3p^{5} ^{2}P_{3/2}^{o} spontaneous radiative decay in ^{32}S^{-} to be 503±54 sec. This is by orders of magnitude the longest lifetime ever measured in a negatively charged ion. Cryogenic cooling of the storage ring gives a residual-gas pressure of a few times 10^{-14} mbar at 13 K and storage of 10 keV sulfur anions for more than an hour. Our experimental results differ by 1.3σ from the only available theoretical prediction [P. Andersson et al., Phys. Rev. A 73, 032705 (2006)].

5.
Phys Rev Lett ; 103(21): 213002, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-20366032

RESUMEN

We have developed a small purely electrostatic ion-beam trap which may be operated in thermal equilibrium at precisely controlled temperatures down to 10 K. Thus, we avoid magnetic field induced mixing of quantum states and may effectively eliminate any influence from absorption of photons from blackbody radiation. We report the first correction-free measurement of the lifetime of the 1s2s2p {4}P{5/2}{0} level of 4He(-) yielding the high-precision result 359.0 +/- 0.7 micros. This result is an essential proof-of-principle for cryogenic electrostatic storage rings and traps for atomic and molecular physics.

6.
Rev Sci Instrum ; 89(3): 033112, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29604753

RESUMEN

A sputter ion source with a solid graphite target has been used to produce dianions with a focus on carbon cluster dianions, Cn2-, with n = 7-24. Singly and doubly charged anions from the source were accelerated together to kinetic energies of 10 keV per atomic unit of charge and injected into one of the cryogenic (13 K) ion-beam storage rings of the Double ElectroStatic Ion Ring Experiment facility at Stockholm University. Spontaneous decay of internally hot Cn2- dianions injected into the ring yielded Cn- anions with kinetic energies of 20 keV, which were counted with a microchannel plate detector. Mass spectra produced by scanning the magnetic field of a 90° analyzing magnet on the ion injection line reflect the production of internally hot C72- - C242- dianions with lifetimes in the range of tens of microseconds to milliseconds. In spite of the high sensitivity of this method, no conclusive evidence of C62- was found while there was a clear C72- signal with the expected isotopic distribution. This is consistent with earlier experimental studies and with theoretical predictions. An upper limit is deduced for a C62- signal that is two orders-of-magnitude smaller than that for C72-. In addition, CnO2- and CnCu2- dianions were detected.

7.
Rev Sci Instrum ; 84(5): 055115, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23742597

RESUMEN

We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2 (-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.

8.
Rev Sci Instrum ; 82(6): 065112, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21721735

RESUMEN

We describe the design of a novel type of storage device currently under construction at Stockholm University, Sweden, using purely electrostatic focussing and deflection elements, in which ion beams of opposite charges are confined under extreme high vacuum cryogenic conditions in separate "rings" and merged over a common straight section. The construction of this double electrostatic ion ring experiment uniquely allows for studies of interactions between cations and anions at low and well-defined internal temperatures and centre-of-mass collision energies down to about 10 K and 10 meV, respectively. Position sensitive multi-hit detector systems have been extensively tested and proven to work in cryogenic environments and these will be used to measure correlations between reaction products in, for example, electron-transfer processes. The technical advantages of using purely electrostatic ion storage devices over magnetic ones are many, but the most relevant are: electrostatic elements which are more compact and easier to construct; remanent fields, hysteresis, and eddy-currents, which are of concern in magnetic devices, are no longer relevant; and electrical fields required to control the orbit of the ions are not only much easier to create and control than the corresponding magnetic fields, they also set no upper mass limit on the ions that can be stored. These technical differences are a boon to new areas of fundamental experimental research, not only in atomic and molecular physics but also in the boundaries of these fields with chemistry and biology. For examples, studies of interactions with internally cold molecular ions will be particular useful for applications in astrophysics, while studies of solvated ionic clusters will be of relevance to aeronomy and biology.

9.
Phys Rev Lett ; 102(15): 153201, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19518629

RESUMEN

We report the first observation of Young-type interference effects in a two-electron transfer process. These effects change strongly as the projectile velocity changes in fast (1.2 and 2.0 MeV) He(2+) + H(2) collisions as manifested in strong variations of the double-electron capture rates with the H(2) orientation. This is consistent with fully quantum mechanical calculations, which ignore sequential electron transfer, and a simple projectile de Broglie wave picture assuming that two-electron transfer probabilities are higher in collisions where the projectile passes close to either one of the H(2) nuclei.

10.
Phys Rev Lett ; 101(8): 083201, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18764612

RESUMEN

We report the direct observation of interference effects in a Young's double-slit experiment where the interfering waves are two spatially separated components of the de Broglie wave of single 1.3 MeV hydrogen atoms formed close to either target nucleus in H++H2 electron-transfer collisions. Quantum interference strongly influences the results even though the hydrogen atoms have a de Broglie wavelength, lambda_{dB}, as small as 25 fm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA