Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Anat ; 245(1): 181-196, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38430000

RESUMEN

Paleozoic synapsids represent the first chapter in the evolution of this large clade that includes mammals. These fascinating terrestrial vertebrates were the first amniotes to successfully adapt to a wide range of feeding strategies, reflected by their varied dental morphologies. Evolution of the marginal dentition on the mammalian side of amniotes is characterized by strong, size and shape heterodonty, with the late Permian therapsids showing heterodonty with the presence of incisiform, caniniform, and multicuspid molariform dentition. Rarity of available specimens has previously prevented detailed studies of dental anatomy and evolution in the initial chapter of synapsid evolution, when synapsids were able to evolve dentition for insectivory, herbivory, and carnivory. Numerous teeth, jaw elements, and skulls of the hypercarnivorous varanopid Mesenosaurus efremovi have been recently discovered in the cave systems near Richards Spur, Oklahoma, permitting the first detailed investigation of the dental anatomy of a Paleozoic tetrapod using multiple approaches, including morphometric and histological analyses. As a distant stem mammal, Mesenosaurus is the first member of this large and successful clade to exhibit a type of dental heterodonty that combines size and morphological (shape) variation of the tooth crowns. Here we present the first evidence of functional differentiation in the dentition of this early synapsid, with three distinct dental regions having diverse morphologies and functions. The quality and quantity of preserved materials has allowed us to identify the orientation and curvature of the carinae (cutting edges), and the variation and distribution of the ziphodonty (serrations) along the carinae. The shape-related heterodonty seen in this taxon may have contributed to this taxon's ability to be a successful mid-sized predator in the taxonomically diverse community of early Permian carnivores, but may have also extended the ecological resilience of this clade of mid-sized predators across major faunal and environmental transitions.


Asunto(s)
Evolución Biológica , Fósiles , Diente , Animales , Fósiles/anatomía & histología , Diente/anatomía & histología , Dentición
2.
J Anat ; 241(3): 628-634, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35762030

RESUMEN

The exquisite preservation of maxillary and mandibular fragments of Seymouria has allowed us to examine for the first time in detail the dental anatomy and patterns of development in this stem amniote. The results obtained through histological examination show that Seymouria has pleurodont implantation with ankylosis of the tooth to the labial side of the jawbone. The dentary and maxillary teeth exhibit similar dental characteristics, such as the attachment bone (alveolar bone) and cementum rising above the jawbone on the base of the tooth, and smooth carinae extending lingually toward the tooth apex. Additionally, the clear presence of plicidentine, infolding of dentine into the pulp cavity, was found within the tooth root extending into the tooth crown. Lastly, the tooth replacement pattern is alternating, illustrating that Seymouria retains the classic primitive condition for tetrapods, a pattern that is continued in amniotes. Our results provide an important basis for comparison with other stem amniotes and with amniotes.


Asunto(s)
Anfibios/anatomía & histología , Fósiles/anatomía & histología , Diente/anatomía & histología , Animales , Mandíbula/anatomía & histología , Maxilar/anatomía & histología , Odontogénesis/fisiología , Diente/fisiología
3.
J Anat ; 240(5): 833-849, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34775594

RESUMEN

Varanopids are a group of Palaeozoic terrestrial amniotes which represent one of the earliest-diverging groups of synapsids, but their palaeoneurology has gone largely unstudied and recent analyses have challenged their traditional placement within synapsids. We utilized computed tomography (CT) to study the virtual cranial and otic endocasts of six varanopids, including representative taxa of both mycterosaurines and varanodontines. Our results show that the varanopid brain is largely plesiomorphic, being tubular in shape and showing no expansion of the cerebrum or olfactory bulbs, but is distinct in showing highly expanded floccular fossae. The housing of the varanopid bony labyrinth is also distinct, in that the labyrinth is bounded almost entirely by the supraoccipital-opisthotic complex, with the prootic only bordering the ventral portion of the vestibule. The bony labyrinth is surprisingly well-ossified, clearly preserving the elliptical, sub-orthogonal canals, prominent ampullae, and the short, undifferentiated vestibule; this high degree of ossification is similar to that seen in therapsid synapsids and supports the traditional placement of varanopids within Synapsida. The enlarged anterior canal, together with the elliptical, orthogonal canals and enlarged floccular fossa, lend support for the fast head movements indicated by the inferred predatory feeding mode of varanopids. Reconstructed neurosensory anatomy indicates that varanopids may have a much lower-frequency hearing range compared to more derived synapsids, suggesting that, despite gaining some active predatory features, varanopids retain plesiomorphic hearing capabilities. As a whole, our data reveal that the neuroanatomy of pelycosaur-grade synapsids is far more complex than previously anticipated.


Asunto(s)
Oído Interno , Fósiles , Evolución Biológica , Oído Interno/anatomía & histología , Cráneo/anatomía & histología , Tomografía Computarizada por Rayos X
4.
Biol Lett ; 15(9): 20190514, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31506034

RESUMEN

Teeth are often thought of as structures that line the margins of the mouth; however, tooth-like structures called odontodes are commonly found on the dermal bones of many Palaeozoic vertebrates including early jawless fishes. 'Odontode' is a generalized term for all tooth-like dentine structures that have homologous tissues and development. This definition includes true teeth and the odontodes of early 'fishes', which have been recently examined to gain new insights into the still unresolved origin of teeth. Two leading hypotheses are frequently referenced in this debate: the 'outside-in' hypothesis, which posits that dermal odontodes evolutionarily migrate into the oral cavity, and the 'inside-out' hypothesis, which posits that teeth originated in the oropharyngeal cavity and then moved outwards into the oral cavity. Here, we show that, unlike the well-known one-to-one replacement patterns of marginal dentition, the palatal dentition of the early Permian tetrapods, including the dissorophoid amphibian Cacops and the early reptile Captorhinus, is overgrown by a new layer of bone to which the newest teeth are then attached. This same overgrowth pattern has been well documented in dermal and oral odontodes (i.e. teeth) of early fishes. We propose that this pattern represents the primitive condition for vertebrates and may even predate the origin of jaws. Therefore, this pattern crosses the fish-tetrapod transition, and the retention of this ancestral pattern in the palatal dentition of early terrestrial tetrapods provides strong support for the 'outside-in' hypothesis of tooth origins.


Asunto(s)
Dentición , Diente , Animales , Evolución Biológica , Maxilares , Vertebrados
5.
Naturwissenschaften ; 106(1-2): 2, 2019 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-30610457

RESUMEN

The Early Permian Richards Spur locality is unique in preserving a highly diverse faunal assemblage in a cave system, composed of synapsids, reptiles, and anamniotes. However, the presence of Dimetrodon, the most common synapsid of Early Permian localities of the southwestern USA, has never been recorded from the site. Here, we describe for the first time the morphology and histology of a small neural spine with the distinctive figure-8 shape attributable to Dimetrodon. Additionally, histological analysis of previously described sphenacodontid teeth suggests the presence of a derived species of Dimetrodon at the Richards Spur locality. The presence of this derived synapsid, typical of the later occurring Kungurian localities of Texas and Oklahoma, is unexpected at the stratigraphically older Richards Spur locality. The cave system at Richards Spur preserves mainly basal synapsid taxa, including small caseid, varanopid, and sphenacodontid skeletal remains. The presence of a derived species of Dimetrodon suggests not only that this animal was more widespread than previously thought, but that there are different patterns of Early Permian synapsid evolution in different ecological settings.


Asunto(s)
Fósiles , Reptiles/anatomía & histología , Reptiles/clasificación , Distribución Animal , Animales , Cuevas , Oklahoma , Vertebrados/clasificación
6.
Nature ; 496(7444): 210-4, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23579680

RESUMEN

Fossil dinosaur embryos are surprisingly rare, being almost entirely restricted to Upper Cretaceous strata that record the late stages of non-avian dinosaur evolution. Notable exceptions are the oldest known embryos from the Early Jurassic South African sauropodomorph Massospondylus and Late Jurassic embryos of a theropod from Portugal. The fact that dinosaur embryos are rare and typically enclosed in eggshells limits their availability for tissue and cellular level investigations of development. Consequently, little is known about growth patterns in dinosaur embryos, even though post-hatching ontogeny has been studied in several taxa. Here we report the discovery of an embryonic dinosaur bone bed from the Lower Jurassic of China, the oldest such occurrence in the fossil record. The embryos are similar in geological age to those of Massospondylus and are also assignable to a sauropodomorph dinosaur, probably Lufengosaurus. The preservation of numerous disarticulated skeletal elements and eggshells in this monotaxic bone bed, representing different stages of incubation and therefore derived from different nests, provides opportunities for new investigations of dinosaur embryology in a clade noted for gigantism. For example, comparisons among embryonic femora of different sizes and developmental stages reveal a consistently rapid rate of growth throughout development, possibly indicating that short incubation times were characteristic of sauropodomorphs. In addition, asymmetric radial growth of the femoral shaft and rapid expansion of the fourth trochanter suggest that embryonic muscle activation played an important role in the pre-hatching ontogeny of these dinosaurs. This discovery also provides the oldest evidence of in situ preservation of complex organic remains in a terrestrial vertebrate.


Asunto(s)
Dinosaurios/anatomía & histología , Dinosaurios/embriología , Fósiles , Animales , China , Fémur/anatomía & histología , Fémur/embriología , Espectroscopía Infrarroja por Transformada de Fourier , Sincrotrones
7.
Proc Biol Sci ; 285(1890)2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404877

RESUMEN

The mammalian dentition is uniquely characterized by a combination of precise occlusion, permanent adult teeth and a unique tooth attachment system. Unlike the ankylosed teeth in most reptiles, mammal teeth are supported by a ligamentous tissue that suspends each tooth in its socket, providing flexible and compliant tooth attachment that prolongs the life of each tooth and maintains occlusal relationships. Here we investigate dental ontogeny through histological examination of a wide range of extinct synapsid lineages to assess whether the ligamentous tooth attachment system is unique to mammals and to determine how it evolved. This study shows for the first time that the ligamentous tooth attachment system is not unique to crown mammals within Synapsida, having arisen in several non-mammalian therapsid clades as a result of neoteny and progenesis in dental ontogeny. Mammalian tooth attachment is here re-interpreted as a paedomorphic condition relative to the ancestral synapsid form of tooth attachment.


Asunto(s)
Evolución Biológica , Dentición , Mamíferos/anatomía & histología , Reptiles/anatomía & histología , Diente/anatomía & histología , Animales , Mamíferos/crecimiento & desarrollo , Reptiles/crecimiento & desarrollo , Diente/crecimiento & desarrollo
8.
J Anat ; 232(3): 371-382, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29210080

RESUMEN

Continuous tooth replacement is common for tetrapods, but some groups of acrodont lepidosaurs have lost the ability to replace their dentition (monophyodonty). Acrodonty, where the tooth attaches to the apex of the jawbone, is an unusual form of tooth attachment that has been associated with the highly autapomorphic condition of monophyodonty. Beyond Lepidosauria, very little is known about the relationship between acrodonty and monophyodonty in other amniotes. We test for this association with a detailed study of the dentition of Opisthodontosaurus, an unusual Early Permian captorhinid eureptile with acrodont dentition. We provide clear evidence, both histological and morphological, that there were regular tooth replacement events in the lower jaw of Opisthodontosaurus, similar to its captorhinid relatives. Thus, our study of the oldest known amniote with an acrodont dentition shows that acrodonty does not inhibit tooth replacement, and that many of the characteristics assigned to lepidosaurian acrodonty are actually highly derived features of lepidosaurs that have resulted secondarily from a lack of tooth replacement. In the context of reptilian dental evolution, we propose the retention of the simple definition of acrodonty, which only pertains to the relative position of the tooth at the apex of the jaw, where the jaw possesses equal lingual and labial walls. This definition of implantation therefore focuses solely on the spatial relationship between the tooth and the jawbone, and separates this relationship from tooth development and replacement.


Asunto(s)
Evolución Biológica , Odontogénesis , Reptiles , Diente , Animales , Dentición , Fósiles
9.
10.
Nature ; 473(7347): 364-7, 2011 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-21593869

RESUMEN

Amphisbaenia is a speciose clade of fossorial lizards characterized by a snake-like body and a strongly reinforced skull adapted for head-first burrowing. The evolutionary origins of amphisbaenians are controversial, with molecular data uniting them with lacertids, a clade of Old World terrestrial lizards, whereas morphology supports a grouping with snakes and other limbless squamates. Reports of fossil stem amphisbaenians have been falsified, and no fossils have previously tested these competing phylogenetic hypotheses or shed light on ancestral amphisbaenian ecology. Here we report the discovery of a new lacertid-like lizard from the Eocene Messel locality of Germany that provides the first morphological evidence for lacertid-amphisbaenian monophyly on the basis of a reinforced, akinetic skull roof and braincase, supporting the view that body elongation and limblessness in amphisbaenians and snakes evolved independently. Morphometric analysis of body shape and ecology in squamates indicates that the postcranial anatomy of the new taxon is most consistent with opportunistically burrowing habits, which in combination with cranial reinforcement indicates that head-first burrowing evolved before body elongation and may have been a crucial first step in the evolution of amphisbaenian fossoriality.


Asunto(s)
Fósiles , Lagartos/anatomía & histología , Lagartos/clasificación , Filogenia , Animales , Tamaño Corporal , Ecosistema , Extremidades/anatomía & histología , Alemania , Lagartos/fisiología , Modelos Biológicos , Cráneo/anatomía & histología , Serpientes/anatomía & histología , Serpientes/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA