RESUMEN
Paramagnetic metal hydride (PMH) complexes play important roles in catalytic applications and bioinorganic chemistry. 3d PMH chemistry has largely focused on Ti, Mn, Fe, and Co. Various MnII PMHs have been proposed as intermediates in catalysis, but isolated MnII PMHs are limited to dimeric high-spin MnII structures with bridging hydrides. In this paper, a series of the first low-spin monomeric MnII PMH complexes are generated by chemical oxidation of their MnI analogues. This series is of the type trans-[MnH(L)(dmpe)2]+/0 where the trans ligand L is PMe3, C2H4, or CO [dmpe is 1,2-bis(dimethylphosphino)ethane], and the thermal stability of the MnII hydride complexes was found to be strongly dependent on the identity of the trans ligand. When L is PMe3, the complex is the first example of an isolated monomeric MnII hydride complex. In contrast, when L is C2H4 or CO, the complexes are only stable at low temperatures; upon warming to room temperature, the former decomposed to afford [Mn(dmpe)3]+, accompanied by ethane and ethylene, whereas the latter eliminated H2, generating [Mn(MeCN)(CO)(dmpe)2]+ or a mixture of products including [Mn(κ1-PF6)(CO)(dmpe)2], depending on the reaction conditions. All PMHs were characterized by low-temperature electron paramagnetic resonance (EPR) spectroscopy, and stable [MnH(PMe3)(dmpe)2]+ was further characterized by UV-vis and IR spectroscopy, Superconducting Quantum Interference Device magnetometry, and single-crystal X-ray diffraction. Noteworthy spectral properties are the significant EPR superhyperfine coupling to the hydride (â¼85 MHz) and an increase (+33 cm-1) in the Mn-H IR stretch upon oxidation. Density functional theory calculations were also employed to gain insights into the acidity and bond strengths of the complexes. MnII-H bond dissociation free energies are estimated to decrease in the series of complexes from 60 (L = PMe3) to 47 kcal/mol (L = CO).
RESUMEN
Understanding the thermodynamics of paramagnetic transition metal hydride complexes, especially of the abundant 3d metals, is important in the design of electrocatalysts and organometallic catalysts. The pKaMeCN([MHLn]+/[MLn) of paramagnetic hydrides in MeCN are estimated for the first time using the ligand acidity constant (LAC) equation where contributions to the pKaMeCN from each ligand are simply added together, with the sum corrected for effects of charge and 5d metals. The pKaLAC-MeCN([MHLn]+/MLn) of over 200 hydride complexes MHLn are used, along with their electrochemical potentials from the literature, in an uncommonly applied thermochemical cycle in order to reveal systematic trends in the redox couples MIII/II and MV/IV (M = Cr, Mo, W), MnII/I, ReVI/V and ReIV/III, MIII/II and MIV/III (M = Fe, Ru, Os), and MIII/II and MII/I (M = Co, Rh, and Ir) and allow the estimation of the bond dissociation free energies BDFE(MH) of the unoxidized hydrides MHLn and the prediction of the electrochemical potential for their oxidation. Density functional theory (DFT) calculations are used to validate the pKaLAC-MeCN values of hydrides of WIII, MnII, FeIII, RuIII, CoII, and NiIII. When a pKaLAC-MeCN is less than zero for a given complex [MHLn]+, the oxidation of MHLn is irreversible due to proton loss from the oxidized complex to the solvent. When pKaLAC-MeCN â« 0, the oxidation is reversible when there is no gross change in the coordination geometry upon a change in the redox state. Twenty paramagnetic hydrides prepared in bulk all have pKaLAC-MeCN > 8.
RESUMEN
A variety of transition metal complexes bearing aminoquinoline PNHH'-R ligands R = Ph (L1H), Cy (L2H) and their amido analogues are reported for rhodium(I) ([Rh(L1H)(PPh3)]+1 and Rh(L1)(PPh3) 2), cobalt(II) (Co(L2)(Cl) 3), and iron(II) ([Fe(L1H)2]2+5, Fe(L1)26, and [Fe(C5Me5)(L1H)]PF67). The acid-base and redox properties of the amido complexes 2, 6, and their protio parent complexes 1, and 5 permit the determination of the pKa and bond dissociation free energy (BDFE) of their N-H bonds while the ligand scaffold is coordinated to metal centres of square planar and octahedral geometry, respectively. From relative concentrations obtained by the use of 31P{1H} NMR spectroscopy, a pKaTHF value of 14 is calculated for rhodium complex 1, 6.4 for iron complex 5, and 24 for iron complex 7. These data, when combined with elecrochemical potentials obtained via cyclic voltammetry, allow the calculations of BDFE values for the N-H bond of 69 kcal mol-1 for 1, and of 55 kcal mol-1 for 5.
Asunto(s)
Rodio , Aminoquinolinas , Cobalto , Electrónica , Hierro/química , Ligandos , Rodio/químicaRESUMEN
In the title compound (systematic name: bis-{1,2-bis[12,14-dioxa-13-phospha-penta-cyclo-[13.8.0.02,11.03,8.018,23]tricosa-1(15),2(11),3(8),4,6,9,16,18(23),19,21-deca-en-13-yl]ethane}-dichlorido-iron(II) di-chloro-methane disolvate), [FeCl2(C42H28O4P2)2]·2CH2Cl2, the FeII ion lies on a crystallographic twofold rotation axis and is coordinated by four P atoms from two (R,R)-1,2-bis-(bi-naphthyl-phospho-n-ito)ethane (BPE) ligands and two Cl ligands in a distorted cis-FeCl2P4 octa-hedral coordination geometry. In the crystal, weak C-Hâ¯O and C-Hâ¯π inter-actions link the mol-ecules into layers lying parallel to (001). A weak intra-molecular C-Hâ¯O hydrogen bond is also observed. The asymmetric unit contains one CH2Cl2 solvent mol-ecule, which is disordered over two sets of site with refined occupancies in the ratio 0.700â (6):0.300â (6).