Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(29): e202402052, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705856

RESUMEN

Carbene-metal-amides (CMAs) are emerging delayed fluorescence materials for organic light-emitting diode (OLED) applications. CMAs possess fast, efficient emission owing to rapid forward and reverse intersystem crossing (ISC) rates. The resulting dynamic equilibrium between singlet and triplet spin manifolds distinguishes CMAs from most purely organic thermally activated delayed fluorescence emitters. However, direct experimental triplet characterization in CMAs is underutilized, limiting our detailed understanding of the ISC mechanism. In this work, we combine time-resolved spectroscopy with tuning of state energies through environmental polarity and metal substitution, focusing on the interplay between charge-transfer (3CT) and local exciton (3LE) triplets. Unlike previous photophysical work, we investigate evaporated host : guest films of CMAs and small-molecule hosts for increased device relevance. Transient absorption reveals an evolution in the triplet excited-state absorption (ESA) consistent with a change in orbital character between hosts with differing dielectric constants. Using quantum chemical calculations, we simulate ESAs of the lowest triplet states, highlighting the contribution of only 3CT and donor-moiety 3LE states to spectral features, with no strong evidence for a low-lying acceptor-centered 3LE. Thus, our work provides a blueprint for understanding the role of triplet excited states in CMAs which will enable further intelligent optimization of this promising class of materials.

2.
Inorg Chem ; 62(39): 15797-15808, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37718553

RESUMEN

Photoactive chromium(III) complexes saw a conceptual breakthrough with the discovery of the prototypical molecular ruby mer-[Cr(ddpd)2]3+ (ddpd = N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine), which shows intense long-lived near-infrared (NIR) phosphorescence from metal-centered spin-flip states. In contrast to the numerous studies on chromium(III) photophysics, only 10 luminescent molybdenum(III) complexes have been reported so far. Here, we present the synthesis and characterization of mer-MoX3(ddpd) (1, X = Cl; 2, X = Br) and cisfac-[Mo(ddpd)2]3+ (cisfac-[3]3+), an isomeric heavy homologue of the prototypical molecular ruby. For cisfac-[3]3+, we found strong zero-field splitting using magnetic susceptibility measurements and electron paramagnetic resonance spectroscopy. Electronic spectra covering the spin-forbidden transitions show that the spin-flip states in mer-1, mer-2, and cisfac-[3]3+ are much lower in energy than those in comparable chromium(III) compounds. While all three complexes show weak spin-flip phosphorescence in NIR-II, the emission of cisfac-[3]3+ peaking at 1550 nm is particularly low in energy. Femtosecond transient absorption spectroscopy reveals a short excited-state lifetime of 1.4 ns, 6 orders of magnitude shorter than that of mer-[Cr(ddpd)2]3+. Using density functional theory and ab initio multireference calculations, we break down the reasons for this disparity and derive principles for the design of future stable photoactive molybdenum(III) complexes.

3.
Adv Mater ; 36(5): e2306249, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37656901

RESUMEN

A series of carbene-gold-acetylide complexes [(BiCAAC)AuCC]n C6 H5- n (n = 1, Au1; n = 2, Au2; n = 3, Au3; BiCAAC = bicyclic(alkyl)(amino)carbene) have been synthesized in high yields. Compounds Au1-Au3 exhibit deep-blue to blue-green phosphorescence with good quantum yields up to 43% in all media. An increase of the (BiCAAC)Au moieties in gold complexes Au1-Au3 increases the extinction coefficients in the UV-vis spectra and stronger oscillator strength coefficients supported by theoretical calculations. The luminescence radiative rates decrease with an increase of the (BiCAAC)Au moieties. The time-dependent density functional theory study supports a charge-transfer nature of the phosphorescence due to the large (0.5-0.6 eV) energy gap between singlet excited (S1 ) and triplet excited (T1 ) states. Transient luminescence study reveals the presence of both nonstructured UV prompt-fluorescence and vibronically resolved long-lived phosphorescence 428 nm. Organic light-emitting diodes (OLED) are fabricated by physical vapor deposition with 2,8-bis(diphenylphosphoryl)dibenzo[b,d]furan (PPF) as a host material with complex Au1. The near-UV electroluminescence is observed at 405 nm with device efficiency of 1% while demonstrating OLED device lifetime LT50 up to 20 min at practical brightness of 10 nits, indicating a highly promising class of materials to develop stable UV-OLEDs.

4.
Adv Mater ; : e2404357, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727713

RESUMEN

Linear gold complexes of the "carbene-metal-amide" (CMA) type are prepared with a rigid benzoguanidine amide donor and various carbene ligands. These complexes emit in the deep-blue range at 424 and 466 nm with 100% quantum yields in all media. The deep-blue thermally activates delayed fluorescence originates from a charge transfer state with an excited state lifetime as low as 213 ns, resulting in fast radiative rates of 4.7 × 106 s-1. The high thermal and photo-stability of these carbene-metal-amide (CMA) materials enabled the authors to fabricate highly energy-efficient organic light-emitting diodes (OLED) in host-guest architectures. Deep-blue OLED devices with electroluminescence at 416 and 457 nm with practical external quantum efficiencies of up to 23% at 100 cd m-2 with excellent color coordinates CIE (x; y) = 0.16; 0.07 and 0.17; 0.18 are reported. The operating stability of these OLEDs is the longest reported to date (LT50 = 1 h) for deep-blue CMA emitters, indicating a high promise for further development of blue OLED devices. These findings inform the molecular design strategy and correlation between delayed luminescence with high radiative rates and CMA OLED device operating stability.

5.
Adv Mater ; 35(44): e2302279, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37658497

RESUMEN

Objects are chiral when they cannot be superimposed with their mirror image. Materials can emit chiral light with an excess of right- or left-handed circular polarization. This circularly polarized luminescence (CPL) is key to promising future applications, such as highly efficient displays, holography, sensing, enantiospecific discrimination, synthesis of drugs, quantum computing, and cryptography. Here, a practical guide to CPL spectroscopy is provided. First, the fundamentals of the technique are laid out and a detailed account of recent experimental advances to achieve highly sensitive and accurate measurements is given, including all corrections required to obtain reliable results. Then the most common artifacts and pitfalls are discussed, especially for the study of thin films, for example, based on molecules, polymers, or halide perovskites, as opposed to dilute solutions of emitters. To facilitate the adoption by others, custom operating software is made publicly available, equipping the reader with the tools needed for successful and accurate CPL determination.

6.
Chem Mater ; 34(16): 7526-7542, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36032551

RESUMEN

Carbene-metal-amides (CMAs) are an emerging class of photoemitters based on a linear donor-linker-acceptor arrangement. They exhibit high flexibility about the carbene-metal and metal-amide bonds, leading to a conformational freedom which has a strong influence on their photophysical properties. Herein we report CMA complexes with (1) nearly coplanar, (2) twisted, (3) tilted, and (4) tilt-twisted orientations between donor and acceptor ligands and illustrate the influence of preferred ground-state conformations on both the luminescence quantum yields and excited-state lifetimes. The performance is found to be optimum for structures with partially twisted and/or tilted conformations, resulting in radiative rates exceeding 1 × 106 s-1. Although the metal atoms make only small contributions to HOMOs and LUMOs, they provide sufficient spin-orbit coupling between the low-lying excited states to reduce the excited-state lifetimes down to 500 ns. At the same time, high photoluminescence quantum yields are maintained for a strongly tilted emitter in a host matrix. Proof-of-concept organic light-emitting diodes (OLEDs) based on these new emitter designs were fabricated, with a maximum external quantum efficiency (EQE) of 19.1% with low device roll-off efficiency. Transient electroluminescence studies indicate that molecular design concepts for new CMA emitters can be successfully translated into the OLED device.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA