Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 155(4): 765-77, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24209692

RESUMEN

Kinase suppressor of Ras 2 (KSR2) is an intracellular scaffolding protein involved in multiple signaling pathways. Targeted deletion of Ksr2 leads to obesity in mice, suggesting a role in energy homeostasis. We explored the role of KSR2 in humans by sequencing 2,101 individuals with severe early-onset obesity and 1,536 controls. We identified multiple rare variants in KSR2 that disrupt signaling through the Raf-MEKERK pathway and impair cellular fatty acid oxidation and glucose oxidation in transfected cells; effects that can be ameliorated by the commonly prescribed antidiabetic drug, metformin. Mutation carriers exhibit hyperphagia in childhood, low heart rate, reduced basal metabolic rate and severe insulin resistance. These data establish KSR2 as an important regulator of energy intake, energy expenditure, and substrate utilization in humans. Modulation of KSR2-mediated effects may represent a novel therapeutic strategy for obesity and type 2 diabetes.


Asunto(s)
Resistencia a la Insulina , Obesidad/genética , Proteínas Serina-Treonina Quinasas/genética , Factores de Edad , Edad de Inicio , Secuencia de Aminoácidos , Animales , Niño , Metabolismo Energético , Ácidos Grasos/metabolismo , Femenino , Glucosa/metabolismo , Humanos , Hiperfagia/genética , Hiperfagia/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Obesidad/epidemiología , Obesidad/metabolismo , Oxidación-Reducción , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/metabolismo , Alineación de Secuencia
2.
Proc Natl Acad Sci U S A ; 116(43): 21715-21726, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31591222

RESUMEN

Meningiomas account for one-third of all primary brain tumors. Although typically benign, about 20% of meningiomas are aggressive, and despite the rigor of the current histopathological classification system there remains considerable uncertainty in predicting tumor behavior. Here, we analyzed 160 tumors from all 3 World Health Organization (WHO) grades (I through III) using clinical, gene expression, and sequencing data. Unsupervised clustering analysis identified 3 molecular types (A, B, and C) that reliably predicted recurrence. These groups did not directly correlate with the WHO grading system, which classifies more than half of the tumors in the most aggressive molecular type as benign. Transcriptional and biochemical analyses revealed that aggressive meningiomas involve loss of the repressor function of the DREAM complex, which results in cell-cycle activation; only tumors in this category tend to recur after full resection. These findings should improve our ability to predict recurrence and develop targeted treatments for these clinically challenging tumors.


Asunto(s)
Proteínas de Interacción con los Canales Kv/genética , Neoplasias Meníngeas/genética , Meningioma/genética , Recurrencia Local de Neoplasia/genética , Proteínas Represoras/genética , Adulto , Anciano , Anciano de 80 o más Años , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular , Variaciones en el Número de Copia de ADN/genética , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Neoplasias Meníngeas/patología , Meningioma/patología , Persona de Mediana Edad , Pronóstico , Adulto Joven
3.
J Neurosci ; 40(2): 459-477, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31748376

RESUMEN

α-Synuclein (α-Syn) accumulation is a pathological hallmark of Parkinson's disease. Duplications and triplications of SNCA, the gene coding for α-Syn, cause genetic forms of the disease, which suggests that increased α-Syn dosage can drive PD. To identify the proteins that regulate α-Syn, we previously performed a screen of potentially druggable genes that led to the identification of 60 modifiers. Among them, Doublecortin-like kinase 1 (DCLK1), a microtubule binding serine threonine kinase, emerged as a promising target due to its potent effect on α-Syn and potential druggability as a neuron-expressed kinase. In this study, we explore the relationship between DCLK1 and α-Syn in human cellular and mouse models of PD. First, we show that DCLK1 regulates α-Syn levels post-transcriptionally. Second, we demonstrate that knockdown of Dclk1 reduces phosphorylated species of α-Syn and α-Syn-induced neurotoxicity in the SNc in two distinct mouse models of synucleinopathy. Last, silencing DCLK1 in human neurons derived from individuals with SNCA triplications reduces phosphorylated and total α-Syn, thereby highlighting DCLK1 as a potential therapeutic target to reduce pathological α-Syn in disease.SIGNIFICANCE STATEMENT DCLK1 regulates α-Syn protein levels, and Dclk1 knockdown rescues α-Syn toxicity in mice. This study provides evidence for a novel function for DCLK1 in the mature brain, and for its potential as a new therapeutic target for synucleinopathies.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Quinasas Similares a Doblecortina , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(7): E1511-E1519, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29382756

RESUMEN

Capicua (CIC) regulates a transcriptional network downstream of the RAS/MAPK signaling cascade. In Drosophila, CIC is important for many developmental processes, including embryonic patterning and specification of wing veins. In humans, CIC has been implicated in neurological diseases, including spinocerebellar ataxia type 1 (SCA1) and a neurodevelopmental syndrome. Additionally, we and others have reported mutations in CIC in several cancers. However, whether CIC is a tumor suppressor remains to be formally tested. In this study, we found that deletion of Cic in adult mice causes T cell acute lymphoblastic leukemia/lymphoma (T-ALL). Using hematopoietic-specific deletion and bone marrow transplantation studies, we show that loss of Cic from hematopoietic cells is sufficient to drive T-ALL. Cic-null tumors show up-regulation of the KRAS pathway as well as activation of the NOTCH1 and MYC transcriptional programs. In sum, we demonstrate that loss of CIC causes T-ALL, establishing it as a tumor suppressor for lymphoid malignancies. Moreover, we show that mouse models lacking CIC in the hematopoietic system are robust models for studying the role of RAS signaling as well as NOTCH1 and MYC transcriptional programs in T-ALL.


Asunto(s)
Diferenciación Celular , Susceptibilidad a Enfermedades , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiología , Proteínas Represoras/fisiología , Linfocitos T/patología , Animales , Células Cultivadas , Ratones , Ratones Noqueados , Mutación , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
5.
J Neurosci ; 38(43): 9286-9301, 2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30249792

RESUMEN

Accumulation of α-Synuclein (α-Syn) causes Parkinson's disease (PD) as well as other synucleopathies. α-Syn is the major component of Lewy bodies and Lewy neurites, the proteinaceous aggregates that are a hallmark of sporadic PD. In familial forms of PD, mutations or copy number variations in SNCA (the α-Syn gene) result in a net increase of its protein levels. Furthermore, common risk variants tied to PD are associated with small increases of wild-type α-Syn levels. These findings are further bolstered by animal studies which show that overexpression of α-Syn is sufficient to cause PD-like features. Thus, increased α-Syn levels are intrinsically tied to PD pathogenesis and underscore the importance of identifying the factors that regulate its levels. In this study, we establish a pooled RNAi screening approach and validation pipeline to probe the druggable genome for modifiers of α-Syn levels and identify 60 promising targets. Using a cross-species, tiered validation approach, we validate six strong candidates that modulate α-Syn levels and toxicity in cell lines, Drosophila, human neurons, and mouse brain of both sexes. More broadly, this genetic strategy and validation pipeline can be applied for the identification of therapeutic targets for disorders driven by dosage-sensitive proteins.SIGNIFICANCE STATEMENT We present a research strategy for the systematic identification and validation of genes modulating the levels of α-Synuclein, a protein involved in Parkinson's disease. A cell-based screen of the druggable genome (>7,500 genes that are potential therapeutic targets) yielded many modulators of α-Synuclein that were subsequently confirmed and validated in Drosophila, human neurons, and mouse brain. This approach has broad applicability to the multitude of neurological diseases that are caused by mutations in genes whose dosage is critical for brain function.


Asunto(s)
Genoma/genética , Neuronas/fisiología , Interferencia de ARN/fisiología , Análisis de Secuencia de ARN/métodos , alfa-Sinucleína/genética , Animales , Animales Recién Nacidos , Drosophila , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Reproducibilidad de los Resultados , Especificidad de la Especie
6.
Endocrinology ; 165(8)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38878275

RESUMEN

Genes regulating body fat are shared with high fidelity by mice and humans, indicating that mouse knockout (KO) phenotyping might identify valuable antiobesity drug targets. Male Mrs2 magnesium transporter (Mrs2) KO mice were recently reported as thin when fed a high-fat diet (HFD). They also exhibited increased energy expenditure (EE)/body weight and had beiged adipocytes that, along with isolated hepatocytes, demonstrated increased oxygen consumption, suggesting that increased EE drove the thin phenotype. Here we provide our data on these and additional assays in Mrs2 KO mice. We generated Mrs2 KO mice by homologous recombination. HFD-fed male and female Mrs2 KO mice had significantly less body fat, measured by quantitative magnetic resonance, than wild-type (WT) littermates. HFD-fed Mrs2 KO mice did not demonstrate increased EE by indirect calorimetry and could not maintain body temperature at 4 °C, consistent with their decreased brown adipose tissue stores but despite increased beige white adipose tissue. Instead, when provided a choice between HFD and low-fat diet (LFD), Mrs2 KO mice showed a significant 15% decrease in total energy intake resulting from significantly lower HFD intake that offset numerically increased LFD intake. Food restriction studies performed using WT mice suggested that this decrease in energy intake could explain the loss of body fat. Oral glucose tolerance test studies revealed significantly improved insulin sensitivity in Mrs2 KO mice. We conclude that HFD-fed Mrs2 KO mice are thin with improved insulin sensitivity, and that this favorable metabolic phenotype is driven by hypophagia. Further evaluation is warranted to determine the suitability of MRS2 as a drug target for antiobesity therapeutics.


Asunto(s)
Dieta Alta en Grasa , Metabolismo Energético , Ratones Noqueados , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Femenino , Ratones , Metabolismo Energético/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Ratones Endogámicos C57BL , Peso Corporal , Tejido Adiposo/metabolismo
7.
Sci Adv ; 9(26): eadg1671, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37390208

RESUMEN

Pontine nuclei (PN) neurons mediate the communication between the cerebral cortex andthe cerebellum to refine skilled motor functions. Prior studies showed that PN neurons fall into two subtypes based on their anatomic location and region-specific connectivity, but the extent of their heterogeneity and its molecular drivers remain unknown. Atoh1 encodes a transcription factor that is expressed in the PN precursors. We previously showed that partial loss of Atoh1 function in mice results in delayed PN development and impaired motor learning. In this study, we performed single-cell RNA sequencing to elucidate the cell state-specific functions of Atoh1 during PN development and found that Atoh1 regulates cell cycle exit, differentiation, migration, and survival of PN neurons. Our data revealed six previously not known PN subtypes that are molecularly and spatially distinct. We found that the PN subtypes exhibit differential vulnerability to partial loss of Atoh1 function, providing insights into the prominence of PN phenotypes in patients with ATOH1 missense mutations.


Asunto(s)
Cerebelo , Neuronas , Animales , Ratones , Diferenciación Celular , Ciclo Celular , División Celular , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
8.
Neuron ; 111(4): 481-492.e8, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36577402

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a paradigmatic neurodegenerative disease in that it is caused by a mutation in a broadly expressed protein, ATXN1; however, only select populations of cells degenerate. The interaction of polyglutamine-expanded ATXN1 with the transcriptional repressor CIC drives cerebellar Purkinje cell pathogenesis; however, the importance of this interaction in other vulnerable cells remains unknown. Here, we mutated the 154Q knockin allele of Atxn1154Q/2Q mice to prevent the ATXN1-CIC interaction globally. This normalized genome-wide CIC binding; however, it only partially corrected transcriptional and behavioral phenotypes, suggesting the involvement of additional factors in disease pathogenesis. Using unbiased proteomics, we identified three ATXN1-interacting transcription factors: RFX1, ZBTB5, and ZKSCAN1. We observed altered expression of RFX1 and ZKSCAN1 target genes in SCA1 mice and patient-derived iNeurons, highlighting their potential contributions to disease. Together, these data underscore the complexity of mechanisms driving cellular vulnerability in SCA1.


Asunto(s)
Ataxias Espinocerebelosas , Ratones , Animales , Ataxina-1/genética , Ataxias Espinocerebelosas/metabolismo , Células de Purkinje/metabolismo , Alelos , Mutación/genética , Cerebelo/metabolismo , Factor Regulador X1/genética , Factor Regulador X1/metabolismo
9.
Diabetes Metab Syndr Obes ; 15: 45-58, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35023939

RESUMEN

PURPOSE: Humans with haploinsufficiency of GPR75, an orphan GPCR, are thin. Gpr75 knockout (KO) mice are also thin with improved glucose homeostasis. We wanted to confirm these findings in Gpr75 KO mice and determine whether decreased energy intake and/or increased energy expenditure contributed to the thin phenotype. METHODS: Gpr75 KO mice were generated by homologous recombination. All studies compared female and male Gpr75 KO mice to their wild type (WT) littermates. Body composition was measured by DXA and QMR technologies. Glucose homeostasis was evaluated by measuring glucose and insulin levels during oral glucose tolerance tests (OGTTs). Food intake was measured in group-housed mice. In singly housed mice, energy expenditure was measured in Oxymax indirect calorimetry chambers, and locomotor activity was measured in Oxymax and Photobeam Activity System chambers. RESULTS: In all 12 cohorts of adult female or male mice, Gpr75 KO mice had less body fat; pooled data showed that, compared to WT littermates (n = 103), Gpr75 KO mice (n = 118) had 49% less body fat and 4% less LBM (P < 0.001 for each). KO mice also had 8% less body fat at weaning (P < 0.05), and during the month after weaning as the thin phenotype became more exaggerated, Gpr75 KO mice ate significantly less than, but had energy expenditure and activity levels comparable to, their WT littermates. During OGTTs, Gpr75 KO mice showed improved glucose tolerance (glucose AUC 23% lower in females, P < 0.05, and 26% lower in males, P < 0.001), accompanied by significantly decreased insulin levels and significantly increased insulin sensitivity indices. CONCLUSION: Gpr75 KO mice are thin at weaning, are hypophagic as the thin phenotype becomes more exaggerated, and exhibit improved glucose tolerance and insulin sensitivity as healthy-appearing adults. These results suggest that inhibiting GPR75 in obese humans may safely decrease energy intake and body fat while improving glucose tolerance and insulin sensitivity.

10.
J Clin Invest ; 132(9)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35499073

RESUMEN

Many neurodegenerative disorders are caused by abnormal accumulation of misfolded proteins. In spinocerebellar ataxia type 1 (SCA1), accumulation of polyglutamine-expanded (polyQ-expanded) ataxin-1 (ATXN1) causes neuronal toxicity. Lowering total ATXN1, especially the polyQ-expanded form, alleviates disease phenotypes in mice, but the molecular mechanism by which the mutant ATXN1 is specifically modulated is not understood. Here, we identified 22 mutant ATXN1 regulators by performing a cross-species screen of 7787 and 2144 genes in human cells and Drosophila eyes, respectively. Among them, transglutaminase 5 (TG5) preferentially regulated mutant ATXN1 over the WT protein. TG enzymes catalyzed cross-linking of ATXN1 in a polyQ-length-dependent manner, thereby preferentially modulating mutant ATXN1 stability and oligomerization. Perturbing Tg in Drosophila SCA1 models modulated mutant ATXN1 toxicity. Moreover, TG5 was enriched in the nuclei of SCA1-affected neurons and colocalized with nuclear ATXN1 inclusions in brain tissue from patients with SCA1. Our work provides a molecular insight into SCA1 pathogenesis and an opportunity for allele-specific targeting for neurodegenerative disorders.


Asunto(s)
Cerebelo , Ataxias Espinocerebelosas , Animales , Ataxina-1/genética , Ataxina-1/metabolismo , Cerebelo/metabolismo , Drosophila/genética , Drosophila/metabolismo , Humanos , Ratones , Péptidos , Ataxias Espinocerebelosas/metabolismo , Transglutaminasas
11.
Diabetes Metab Syndr Obes ; 14: 3753-3785, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34483672

RESUMEN

PURPOSE: Obesity is a major public health problem. Understanding which genes contribute to obesity may better predict individual risk and allow development of new therapies. Because obesity of a mouse gene knockout (KO) line predicts an association of the orthologous human gene with obesity, we reviewed data from the Lexicon Genome5000TM high throughput phenotypic screen (HTS) of mouse gene KOs to identify KO lines with high body fat. MATERIALS AND METHODS: KO lines were generated using homologous recombination or gene trapping technologies. HTS body composition analyses were performed on adult wild-type and homozygous KO littermate mice from 3758 druggable mouse genes having a human ortholog. Body composition was measured by either DXA or QMR on chow-fed cohorts from all 3758 KO lines and was measured by QMR on independent high fat diet-fed cohorts from 2488 of these KO lines. Where possible, comparisons were made to HTS data from the International Mouse Phenotyping Consortium (IMPC). RESULTS: Body fat data are presented for 75 KO lines. Of 46 KO lines where independent external published and/or IMPC KO lines are reported as obese, 43 had increased body fat. For the remaining 29 novel high body fat KO lines, Ksr2 and G2e3 are supported by data from additional independent KO cohorts, 6 (Asnsd1, Srpk2, Dpp8, Cxxc4, Tenm3 and Kiss1) are supported by data from additional internal cohorts, and the remaining 21 including Tle4, Ak5, Ntm, Tusc3, Ankk1, Mfap3l, Prok2 and Prokr2 were studied with HTS cohorts only. CONCLUSION: These data support the finding of high body fat in 43 independent external published and/or IMPC KO lines. A novel obese phenotype was identified in 29 additional KO lines, with 27 still lacking the external confirmation now provided for Ksr2 and G2e3 KO mice. Undoubtedly, many mammalian obesity genes remain to be identified and characterized.

12.
Diabetes Metab Syndr Obes ; 13: 2641-2652, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32801815

RESUMEN

PURPOSE: In humans, single nucleotide polymorphisms (SNPs) near the adjacent protein kinase D1 (PRKD1) and G2/M-phase-specific E3 ubiquitin protein ligase (G2E3) genes on chromosome 14 are associated with obesity. To date, no published evidence links inactivation of either gene to changes in body fat. These two genes are also adjacent on mouse chromosome 12. Because obesity genes are highly conserved between humans and mice, we analyzed body fat in adult G2e3 and Prkd1 knockout (KO) mice to determine whether inactivating either gene leads to obesity in mice and, by inference, probably in humans. METHODS: The G2e3 and Prkd1 KO lines were generated by gene trapping and by homologous recombination methodologies, respectively. Body fat was measured by DEXA in adult mice fed chow from weaning and by QMR in a separate cohort of mice fed high-fat diet (HFD) from weaning. Glucose homeostasis was evaluated with oral glucose tolerance tests (OGTTs) performed on adult mice fed HFD from weaning. RESULTS: Body fat was increased in multiple cohorts of G2e3 KO mice relative to their wild-type (WT) littermates. When data from all G2e3 KO (n=32) and WT (n=31) mice were compared, KO mice showed increases of 11% in body weight (P<0.01), 65% in body fat (P<0.001), 48% in % body fat (P<0.001), and an insignificant 3% decrease in lean body mass. G2e3 KO mice were also glucose intolerant during an OGTT (P<0.05). In contrast, Prkd1 KO and WT mice had comparable body fat levels and glucose tolerance. CONCLUSION: Significant obesity and glucose intolerance were observed in G2e3, but not Prkd1, KO mice. The conservation of obesity genes between mice and humans strongly suggests that the obesity-associated SNPs located near the human G2E3 and PRKD1 genes are linked to variants that decrease the amount of functional human G2E3.

13.
Elife ; 72018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29863470

RESUMEN

Alzheimer's and Parkinson's disease are late onset neurodegenerative diseases that will require therapy over decades to mitigate the effects of disease-driving proteins such tau and α-synuclein (α-Syn). Previously we found that TRIM28 regulates the levels and toxicity of α-Syn and tau (Rousseaux et al., 2016). However, it was not clear how TRIM28 regulates α-Syn and it was not known if its chronic inhibition later in life was safe. Here, we show that TRIM28 may regulate α-Syn and tau levels via SUMOylation, and that genetic suppression of Trim28 in adult mice is compatible with life. We were surprised to see that mice lacking Trim28 in adulthood do not exhibit behavioral or pathological phenotypes, and importantly, adult reduction of TRIM28 results in a decrease of α-Syn and tau levels. These results suggest that deleterious effects from TRIM28 depletion are limited to development and that its inhibition adulthood provides a potential path for modulating α-Syn and tau levels.


Asunto(s)
Envejecimiento/metabolismo , Eliminación de Gen , Proteína 28 que Contiene Motivos Tripartito/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Secuencia de Aminoácidos , Animales , Conducta Animal , Biocatálisis , Encéfalo/metabolismo , Encéfalo/patología , Homeostasis , Hierro/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Estabilidad Proteica , Sumoilación , Proteína 28 que Contiene Motivos Tripartito/química
15.
Thromb Haemost ; 107(6): 1141-50, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22398951

RESUMEN

Plasma kallikrein is a multifunctional serine protease involved in contact activation of coagulation. Deficiency in humans is characterised by prolonged activated partial thromboplastin time (aPTT); however, the balance between thrombosis and haemostasis is not fully understood. A study of plasma kallikrein-deficient mice revealed increased aPTT, without prolonged bleeding time. Prekallikrein antisense oligonucleotide (ASO) treatment in mice suggested potential for a positive therapeutic index. The current goal was to further define the role of plasma kallikrein in coagulation. Blood pressure and heart rate were normal in plasma kallikrein-deficient mice, and mice were completely protected from occlusion (100 ± 1.3% control flow) in 3.5% FeCl3 -induced arterial thrombosis versus heterozygotes (20 ± 11.4%) and wild-type littermates (8 ± 0%). Vessels occluded in 8/8 wild-type, 7/8 heterozygotes, and 0/8 knockouts. Anti-thrombotic protection was less pronounced in 5% FeCl3-induced arterial injury. Integrated blood flow was 8 ± 0% control in wild-type and heterozygotes, and significantly (p<0.01) improved to 43 ± 14.2% in knockouts. The number of vessels occluded was similar in all genotypes. Thrombus weight was significantly reduced in knockouts (-47%) and heterozygotes (-23%) versus wild-type in oxidative venous thrombosis. Average tail bleeding time increased modestly in knockout mice compared to wild-type. Average renal bleeding times were similar in all genotypes. These studies confirm and extend studies with prekallikrein ASO, and demonstrate that plasma kallikrein deletion prevents occlusive thrombus formation in mice with a minimal role in provoked bleeding. Additional support for the significance of the intrinsic pathway in the coagulation cascade is provided, as well as for a potential new anti-thrombotic approach.


Asunto(s)
Hemostasis , Calicreína Plasmática/metabolismo , Precalicreína/metabolismo , Trombosis/prevención & control , Animales , Tiempo de Sangría , Cloruros , Modelos Animales de Enfermedad , Compuestos Férricos , Hemorragia/sangre , Hemorragia/genética , Hemostasis/genética , Heterocigoto , Ratones , Ratones Noqueados , Oligonucleótidos Antisentido/metabolismo , Tiempo de Tromboplastina Parcial , Fenotipo , Calicreína Plasmática/genética , Precalicreína/genética , Trombosis/sangre , Trombosis/inducido químicamente , Trombosis/genética , Factores de Tiempo , Trombosis de la Vena/sangre , Trombosis de la Vena/inducido químicamente , Trombosis de la Vena/genética , Trombosis de la Vena/prevención & control
16.
Obesity (Silver Spring) ; 19(5): 1010-8, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21127480

RESUMEN

The kinase suppressor of ras 2 (KSR2) gene resides at human chromosome 12q24, a region linked to obesity and type 2 diabetes (T2D). While knocking out and phenotypically screening mouse orthologs of thousands of druggable human genes, we found KSR2 knockout (KSR2(-/-)) mice to be more obese and glucose intolerant than melanocortin 4 receptor(-/-) (MC4R(-/-)) mice. The obesity and T2D of KSR2(-/-) mice resulted from hyperphagia which was unresponsive to leptin and did not originate downstream of MC4R. The kinases AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are each linked to food intake regulation, but only mTOR had increased activity in KSR2(-/-) mouse brain, and the ability of rapamycin to inhibit food intake in KSR2(-/-) mice further implicated mTOR in this process. The metabolic phenotype of KSR2 heterozygous (KSR2(+/minus;)) and KSR2(-/-) mice suggests that human KSR2 variants may contribute to a similar phenotype linked to human chromosome 12q24.


Asunto(s)
Tejido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hiperfagia/metabolismo , Obesidad/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Ingestión de Alimentos/genética , Leptina/metabolismo , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética
17.
Obesity (Silver Spring) ; 16(10): 2362-7, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18719666

RESUMEN

We developed a high-throughput approach to knockout (KO) and phenotype mouse orthologs of the 5,000 potential drug targets in the human genome. As part of the phenotypic screen, dual-energy X-ray absorptiometry (DXA) technology estimates body-fat stores in eight KO and four wild-type (WT) littermate chow-fed mice from each line. Normalized % body fat (nBF) (mean KO % body fat/mean WT littermate % body fat) values from the first 2322 lines with viable KO mice at 14 weeks of age showed a normal distribution. We chose to determine how well this screen identifies body-fat phenotypes by selecting 13 of these 2322 KO lines to serve as benchmarks based on their published lean or obese phenotype on a chow diet. The nBF values for the eight benchmark KO lines with a lean phenotype were > or =1 s.d. below the mean for seven (perilipin, SCD1, CB1, MCH1R, PTP1B, GPAT1, PIP5K2B) but close to the mean for NPY Y4R. The nBF values for the five benchmark KO lines with an obese phenotype were >2 s.d. above the mean for four (MC4R, MC3R, BRS3, translin) but close to the mean for 5HT2cR. This screen also identifies novel body-fat phenotypes as exemplified by the obese kinase suppressor of ras 2 (KSR2) KO mice. These body-fat phenotypes were confirmed upon studying additional cohorts of mice for KSR2 and all 13 benchmark KO lines. This simple and cost-effective screen appears capable of identifying genes with a role in regulating mammalian body fat.


Asunto(s)
Absorciometría de Fotón , Tejido Adiposo/fisiopatología , Adiposidad/genética , Obesidad/fisiopatología , Delgadez/fisiopatología , Tejido Adiposo/diagnóstico por imagen , Animales , Grasas de la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Genotipo , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Noqueados , Obesidad/diagnóstico por imagen , Obesidad/genética , Fenotipo , Reproducibilidad de los Resultados , Delgadez/diagnóstico por imagen , Delgadez/genética
18.
Genes Dev ; 19(5): 614-25, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15741322

RESUMEN

The orphan nuclear receptor Ear2 (Nr2f6) is transiently expressed in the rostral part of the rhombic lip in which the locus coeruleus (LC) arises. LC development, regulated by a signaling cascade (Mash1 --> Phox2b --> Phox2a), is disrupted in Ear2-/- embryos as revealed by an approximately threefold reduction in the number of Phox2a- and Phox2b-expressing LC progenitor cells. Mash1 expression in the rhombic lip, however, is unaffected, placing Ear2 in between Mash1 and Phox2a/b. Dopamine-beta-hydroxylase and tyrosine hydroxylase staining demonstrate that >70% of LC neurons are absent in the adult with agenesis affecting primarily the dorsal division of the LC. Normally, this division projects noradrenergic efferents to the cortex that appear to be diminished in Ear2-/- since the cortical concentration of noradrenaline is four times lower in these mice. The rostral region of the cortex is known to contain a circadian pacemaker regulating adaptability to light- and restricted food-driven entrainment. In situ hybridization establishes that the circadian expression pattern of the clock gene Period1 is abolished in the Ear2-/- forebrain. Behavioral experiments reveal that Ear2 mutants have a delayed entrainment to shifted light-dark cycles and adapt less efficiently to daytime feeding schedules. We propose that neurons in the dorsal division of LC contribute to the regulation of the forebrain clock, at least in part, through targeted release of noradrenaline into the cortical area.


Asunto(s)
Corteza Cerebral/embriología , Ritmo Circadiano/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Locus Coeruleus/embriología , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/fisiología , Animales , Factores de Transcripción COUP , Proteínas de Ciclo Celular , Ritmo Circadiano/genética , Proteínas de Unión al ADN , Dopamina beta-Hidroxilasa/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Noqueados , Neuronas/metabolismo , Norepinefrina/metabolismo , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Proteínas Circadianas Period , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Represoras , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
19.
Dev Dyn ; 224(3): 291-302, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12112459

RESUMEN

The chick model has been instrumental in illuminating genes that regulate early vertebrate development and pattern formation. Targeted ectopic gene expression is critical to dissect further the complicated gene interactions that are involved. In an effort to develop a consistent method to ectopically introduce and focally express genes in chick mesoderm, we evaluated and optimized several gene delivery methods, including implantation of 293 cells laden with viral vectors, direct adenoviral injection, and electroporation (EP). We targeted the mesoderm of chick wing buds between stages 19 and 21 (Hamburger and Hamilton stages) and used beta-galactosidase and green fluorescent protein (GFP) to document gene transfer. Expression constructs using the cytomegalovirus (CMV) promoter, the beta-actin promoter, and vectors with an internal ribosomal entry sequence linked to GFP (IRES-GFP) were also compared. After gene transfer, we monitored expression for up to 3 days. The functionality of ectopic expression was demonstrated with constructs containing the coding sequences for Shh, a secreted signaling protein, or Hoxb-8, a transcription factor, both of which can induce digit duplication when ectopically expressed in anterior limb mesoderm. We identified several factors that enhance mesodermal gene transfer. First, the use of a vector with the beta-actin promoter coupled to the 69% fragment of the bovine papilloma virus yielded superior mesodermal expression both by markers and functional results when compared with several CMV-driven vectors. Second, we found the use of mineral oil to be an important adjuvant for EP and direct viral injection to localize and contain vector within the mesoderm at the injection site. Lastly, although ectopic expression could be achieved with all three methods, we favored EP confined to the mesoderm with insulated microelectrodes (confined microelectroporation- CMEP), because vector construction is rapid, the method is efficient, and results were consistent and reproducible.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Técnicas de Transferencia de Gen , Mesodermo/metabolismo , Actinas/genética , Adenoviridae/genética , Animales , Papillomavirus Bovino 1/genética , Línea Celular , Embrión de Pollo , Citomegalovirus/genética , Electroporación , Vectores Genéticos , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Regiones Promotoras Genéticas , Transducción de Señal , Factores de Tiempo , Transfección , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA