RESUMEN
E. coli is considered one of the most important zoonotic pathogens worldwide. Highly virulent and antimicrobial-resistant strains of E. coli have been reported in recent years, making it essential to understand their ecological origins. In this study, we analyzed the characteristics of E. coli strains present in the natural population of American bison (Bison bison) in Mexico. We sampled 123 individuals and determined the presence of E. coli using standard bacteriological methods. The isolated strains were characterized using molecular techniques based on PCR. To evaluate the diversity of E. coli strains in this population, we analyzed 108 suggestive colonies from each fecal sample. From a total of 13,284 suggestive colonies, we isolated 33 E. coli strains that contained at least one virulence gene. The virotypes of these strains were highly varied, including strains with atypical patterns or combinations compared to classical pathotypes, such as the presence of escV, eae, bfpB, and ial genes in E. coli strain LMA-26-6-6, or stx2, eae, and ial genes in E. coli strain LMA-16-1-32. Genotype analysis of these strains revealed a previously undescribed phylogenetic group. Serotyping of all strains showed that serogroups O26 and O22 were the most abundant. Interestingly, strains belonging to these groups exhibited different patterns of virulence genes. Finally, the isolated E. coli strains demonstrated broad resistance to antimicrobials, including various beta-lactam antibiotics.
RESUMEN
The following is a narrative review of the fundamentals of optogenetics. It focuses on the advantages and constraints of manipulating the autonomic nervous system by modifying the pathophysiological characteristics that arise in different diseases. Although the use of this technique is currently experimental, we will discuss improvements that have been implemented and identify the necessary measures for potential preclinical translation in the control of the cardiac autonomic nervous system.
Asunto(s)
Sistema Nervioso Autónomo , Corazón , Optogenética , Optogenética/métodos , Humanos , Animales , Sistema Nervioso Autónomo/fisiología , Corazón/fisiologíaRESUMEN
The neurodegenerative and inflammatory illnesses of amyotrophic lateral sclerosis and multiple sclerosis were once thought to be completely distinct entities that did not share any remarkable features, but new research is beginning to reveal more information about their similarities and differences. Here, we review some of the pathophysiological features of both diseases and their experimental models: RNA-binding proteins, energy balance, protein transportation, and protein degradation at the molecular level. We make a thorough analysis on TDP-43 and hnRNP A1 dysfunction, as a possible common ground in both pathologies, establishing a potential link between neurodegeneration and pathological immunity. Furthermore, we highlight the putative variations that diverge from a common ground in an atemporal course that proposes three phases for all relevant molecular events.