Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(16): 2848-2849, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931017

RESUMEN

Immune checkpoint blockade is effective in treating many human cancers. In this issue of Cell, Luoma et al. show that tissue-resident memory T cells in head and neck cancers rapidly respond to immune checkpoint blockade, and they identify specific CD8+ T cells in pretreatment blood that predict pathologic tumor regression.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias de Cabeza y Cuello , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Humanos , Inhibidores de Puntos de Control Inmunológico , Células T de Memoria , Microambiente Tumoral
2.
Immunity ; 57(2): 287-302.e12, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38354704

RESUMEN

The interaction of the tumor necrosis factor receptor (TNFR) family member CD27 on naive CD8+ T (Tn) cells with homotrimeric CD70 on antigen-presenting cells (APCs) is necessary for T cell memory fate determination. Here, we examined CD27 signaling during Tn cell activation and differentiation. In conjunction with T cell receptor (TCR) stimulation, ligation of CD27 by a synthetic trimeric CD70 ligand triggered CD27 internalization and degradation, suggesting active regulation of this signaling axis. Internalized CD27 recruited the signaling adaptor TRAF2 and the phosphatase SHP-1, thereby modulating TCR and CD28 signals. CD27-mediated modulation of TCR signals promoted transcription factor circuits that induced memory rather than effector associated gene programs, which are induced by CD28 costimulation. CD27-costimulated chimeric antigen receptor (CAR)-engineered T cells exhibited improved tumor control compared with CD28-costimulated CAR-T cells. Thus, CD27 signaling during Tn cell activation promotes memory properties with relevance to T cell immunotherapy.


Asunto(s)
Antígenos CD28 , Redes Reguladoras de Genes , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Antígenos CD28/metabolismo , Transducción de Señal , Activación de Linfocitos , Receptores de Antígenos de Linfocitos T/metabolismo , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Ligando CD27/genética , Ligando CD27/metabolismo , Linfocitos T CD8-positivos
4.
Blood ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683966

RESUMEN

Relapse is the leading cause of death after allogeneic hematopoietic stem cell transplantation (HCT) for leukemia. T cells engineered by gene transfer to express T cell receptors (TCR; TCR-T) specific for hematopoietic-restricted minor histocompatibility (H) antigens may provide a potent selective anti-leukemic effect post-HCT. We conducted a phase I clinical trial employing a novel TCR-T product targeting the minor H antigen HA-1 to treat or consolidate treatment of persistent or recurrent leukemia and myeloid neoplasms. The primary objective was to evaluate the feasibility and safety of administration of HA-1 TCR-T post-HCT. CD8+ and CD4+ T cells expressing the HA-1 TCR and a CD8-co-receptor were successfully manufactured from HA-1 disparate HCT donors. One or more infusions of HA-1 TCR-T following lymphodepleting chemotherapy were administered to nine HCT recipients who had developed disease recurrence post-HCT. TCR-T cells expanded and persisted in vivo after adoptive transfer. No dose-limiting toxicities occurred. Although the study was not designed to assess efficacy, four patients achieved or maintained complete remissions following lymphodepletion and HA-1 TCR-T, with one ongoing at >2 years. Single-cell RNA sequencing of relapsing/progressive leukemia after TCR-T therapy identified upregulated molecules associated with T cell dysfunction or cancer cell survival. HA-1 TCR-T therapy appears feasible and safe and shows preliminary signals of efficacy. This clinical trial is registered at clinicaltrials.gov as NCT03326921.

5.
Nature ; 565(7738): 186-191, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30626941

RESUMEN

We describe a de novo computational approach for designing proteins that recapitulate the binding sites of natural cytokines, but are otherwise unrelated in topology or amino acid sequence. We use this strategy to design mimics of the central immune cytokine interleukin-2 (IL-2) that bind to the IL-2 receptor ßγc heterodimer (IL-2Rßγc) but have no binding site for IL-2Rα (also called CD25) or IL-15Rα (also known as CD215). The designs are hyper-stable, bind human and mouse IL-2Rßγc with higher affinity than the natural cytokines, and elicit downstream cell signalling independently of IL-2Rα and IL-15Rα. Crystal structures of the optimized design neoleukin-2/15 (Neo-2/15), both alone and in complex with IL-2Rßγc, are very similar to the designed model. Neo-2/15 has superior therapeutic activity to IL-2 in mouse models of melanoma and colon cancer, with reduced toxicity and undetectable immunogenicity. Our strategy for building hyper-stable de novo mimetics could be applied generally to signalling proteins, enabling the creation of superior therapeutic candidates.


Asunto(s)
Diseño de Fármacos , Interleucina-15/inmunología , Interleucina-2/inmunología , Imitación Molecular , Receptores de Interleucina-2/agonistas , Receptores de Interleucina-2/inmunología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/inmunología , Simulación por Computador , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Humanos , Interleucina-15/uso terapéutico , Interleucina-2/uso terapéutico , Subunidad alfa del Receptor de Interleucina-2/inmunología , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Ratones , Modelos Moleculares , Estabilidad Proteica , Receptores de Interleucina-2/metabolismo , Transducción de Señal/inmunología
6.
Blood ; 140(21): 2261-2275, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-35605191

RESUMEN

Adoptive transfer of T cells expressing chimeric antigen receptors (CAR-T) effectively treats refractory hematologic malignancies in a subset of patients but can be limited by poor T-cell expansion and persistence in vivo. Less differentiated T-cell states correlate with the capacity of CAR-T to proliferate and mediate antitumor responses, and interventions that limit tumor-specific T-cell differentiation during ex vivo manufacturing enhance efficacy. NOTCH signaling is involved in fate decisions across diverse cell lineages and in memory CD8+ T cells was reported to upregulate the transcription factor FOXM1, attenuate differentiation, and enhance proliferation and antitumor efficacy in vivo. Here, we used a cell-free culture system to provide an agonistic NOTCH1 signal during naïve CD4+ T-cell activation and CAR-T production and studied the effects on differentiation, transcription factor expression, cytokine production, and responses to tumor. NOTCH1 agonism efficiently induced a stem cell memory phenotype in CAR-T derived from naïve but not memory CD4+ T cells and upregulated expression of AhR and c-MAF, driving heightened production of interleukin-22, interleukin-10, and granzyme B. NOTCH1-agonized CD4+ CAR-T demonstrated enhanced antigen responsiveness and proliferated to strikingly higher frequencies in mice bearing human lymphoma xenografts. NOTCH1-agonized CD4+ CAR-T also provided superior help to cotransferred CD8+ CAR-T, driving improved expansion and curative antitumor responses in vivo at low CAR-T doses. Our data expand the mechanisms by which NOTCH can shape CD4+ T-cell behavior and demonstrate that activating NOTCH1 signaling during genetic modification ex vivo is a potential strategy for enhancing the function of T cells engineered with tumor-targeting receptors.


Asunto(s)
Linfoma , Receptores Quiméricos de Antígenos , Humanos , Ratones , Animales , Inmunoterapia Adoptiva , Linfocitos T CD4-Positivos , Factores de Transcripción , Linfoma/tratamiento farmacológico , Receptores de Antígenos de Linfocitos T , Receptor Notch1/genética
7.
Lancet Oncol ; 24(7): 811-822, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37414012

RESUMEN

BACKGROUND: γ-Secretase inhibitors (GSIs) increase B cell maturation antigen (BCMA) density on malignant plasma cells and enhance antitumour activity of BCMA chimeric antigen receptor (CAR) T cells in preclinical models. We aimed to evaluate the safety and identify the recommended phase 2 dose of BCMA CAR T cells in combination with crenigacestat (LY3039478) for individuals with relapsed or refractory multiple myeloma. METHODS: We conducted a phase 1, first-in-human trial combining crenigacestat with BCMA CAR T-cells at a single cancer centre in Seattle, WA, USA. We included individuals aged 21 years or older with relapsed or refractory multiple myeloma, previous autologous stem-cell transplant or persistent disease after more than four cycles of induction therapy, and Eastern Cooperative Oncology Group performance status of 0-2, regardless of previous BCMA-targeted therapy. To assess the effect of the GSI on BCMA surface density on bone marrow plasma cells, participants received GSI during a pretreatment run-in, consisting of three doses administered 48 h apart. BCMA CAR T cells were infused at doses of 50 × 106 CAR T cells, 150 × 106 CAR T cells, 300 × 106 CAR T cells, and 450 × 106 CAR T cells (total cell dose), in combination with the 25 mg crenigacestat dosed three times a week for up to nine doses. The primary endpoints were the safety and recommended phase 2 dose of BCMA CAR T cells in combination with crenigacestat, an oral GSI. This study is registered with ClinicalTrials.gov, NCT03502577, and has met accrual goals. FINDINGS: 19 participants were enrolled between June 1, 2018, and March 1, 2021, and one participant did not proceed with BCMA CAR T-cell infusion. 18 participants (eight [44%] men and ten [56%] women) with multiple myeloma received treatment between July 11, 2018, and April 14, 2021, with a median follow up of 36 months (95% CI 26 to not reached). The most common non-haematological adverse events of grade 3 or higher were hypophosphataemia in 14 (78%) participants, fatigue in 11 (61%), hypocalcaemia in nine (50%), and hypertension in seven (39%). Two deaths reported outside of the 28-day adverse event collection window were related to treatment. Participants were treated at doses up to 450 × 106 CAR+ cells, and the recommended phase 2 dose was not reached. INTERPRETATIONS: Combining a GSI with BCMA CAR T cells appears to be well tolerated, and crenigacestat increases target antigen density. Deep responses were observed among heavily pretreated participants with multiple myeloma who had previously received BCMA-targeted therapy and those who were naive to previous BCMA-targeted therapy. Further study of GSIs given with BCMA-targeted therapeutics is warranted in clinical trials. FUNDING: Juno Therapeutics-a Bristol Myers Squibb company and the National Institutes of Health.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Masculino , Humanos , Femenino , Mieloma Múltiple/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/uso terapéutico , Antígeno de Maduración de Linfocitos B , Inmunoterapia Adoptiva/efectos adversos , Linfocitos T
8.
Nat Immunol ; 12(10): 984-91, 2011 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-21892175

RESUMEN

Major histocompatibility complex (MHC) class I molecules present peptides on the cell surface to CD8(+) T cells, which is critical for the killing of virus-infected or transformed cells. Precursors of MHC class I-presented peptides are trimmed to mature epitopes by the aminopeptidase ERAP1. The US2-US11 genomic region of human cytomegalovirus (HCMV) is dispensable for viral replication and encodes three microRNAs (miRNAs). We show here that HCMV miR-US4-1 specifically downregulated ERAP1 expression during viral infection. Accordingly, the trimming of HCMV-derived peptides was inhibited, which led to less susceptibility of infected cells to HCMV-specific cytotoxic T lymphocytes (CTLs). Our findings identify a previously unknown viral miRNA-based CTL-evasion mechanism that targets a key step in the MHC class I antigen-processing pathway.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Linfocitos T CD8-positivos/inmunología , Citomegalovirus/genética , MicroARNs/fisiología , Aminopeptidasas/genética , Aminopeptidasas/fisiología , Presentación de Antígeno , Línea Celular , Citomegalovirus/inmunología , Infecciones por Citomegalovirus/inmunología , Regulación hacia Abajo , Humanos , Antígenos de Histocompatibilidad Menor , Ovalbúmina/metabolismo
9.
Blood ; 137(3): 323-335, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967009

RESUMEN

CD19-targeted chimeric antigen receptor-engineered (CD19 CAR) T-cell therapy has shown significant efficacy for relapsed or refractory (R/R) B-cell malignancies. Yet, CD19 CAR T cells fail to induce durable responses in most patients. Second infusions of CD19 CAR T cells (CART2) have been considered as a possible approach to improve outcomes. We analyzed data from 44 patients with R/R B-cell malignancies (acute lymphoblastic leukemia [ALL], n = 14; chronic lymphocytic leukemia [CLL], n = 9; non-Hodgkin lymphoma [NHL], n = 21) who received CART2 on a phase 1/2 trial (NCT01865617) at our institution. Despite a CART2 dose increase in 82% of patients, we observed a low incidence of severe toxicity after CART2 (grade ≥3 cytokine release syndrome, 9%; grade ≥3 neurotoxicity, 11%). After CART2, complete response (CR) was achieved in 22% of CLL, 19% of NHL, and 21% of ALL patients. The median durations of response after CART2 in CLL, NHL, and ALL patients were 33, 6, and 4 months, respectively. Addition of fludarabine to cyclophosphamide-based lymphodepletion before the first CAR T-cell infusion (CART1) and an increase in the CART2 dose compared with CART1 were independently associated with higher overall response rates and longer progression-free survival after CART2. We observed durable CAR T-cell persistence after CART2 in patients who received cyclophosphamide and fludarabine (Cy-Flu) lymphodepletion before CART1 and a higher CART2 compared with CART1 cell dose. The identification of 2 modifiable pretreatment factors independently associated with better outcomes after CART2 suggests strategies to improve in vivo CAR T-cell kinetics and responses after repeat CAR T-cell infusions, and has implications for the design of trials of novel CAR T-cell products after failure of prior CAR T-cell immunotherapies.


Asunto(s)
Antígenos CD19/metabolismo , Inmunoterapia Adoptiva , Leucemia de Células B/terapia , Leucemia Linfocítica Crónica de Células B/terapia , Linfoma no Hodgkin/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Adulto , Anciano , Proliferación Celular , Ciclofosfamida/uso terapéutico , Síndrome de Liberación de Citoquinas/complicaciones , Femenino , Humanos , Leucemia de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/inmunología , Linfoma no Hodgkin/inmunología , Masculino , Persona de Mediana Edad , Análisis Multivariante , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Supervivencia sin Progresión , Linfocitos T/inmunología , Resultado del Tratamiento , Vidarabina/análogos & derivados , Vidarabina/uso terapéutico
10.
Immunity ; 41(1): 116-26, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25035956

RESUMEN

Maintenance of immunological memory has been proposed to rely on stem-cell-like lymphocytes. However, data supporting this hypothesis are focused on the developmental potential of lymphocyte populations and are thus insufficient to establish the functional hallmarks of stemness. Here, we investigated self-renewal capacity and multipotency of individual memory lymphocytes by in vivo fate mapping of CD8(+) T cells and their descendants across three generations of serial single-cell adoptive transfer and infection-driven re-expansion. We found that immune responses derived from single naive T (Tn) cells, single primary, and single secondary central memory T (Tcm) cells reached similar size and phenotypic diversity, were subjected to comparable stochastic variation, and could ultimately reconstitute immunocompetence against an otherwise lethal infection with the bacterial pathogen Listeria monocytogenes. These observations establish that adult tissue stem cells reside within the CD62L(+) Tcm cell compartment and highlight the promising therapeutic potential of this immune cell subset.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linaje de la Célula/inmunología , Memoria Inmunológica/inmunología , Células Madre Adultas/inmunología , Animales , Linfocitos T CD8-positivos/trasplante , Diferenciación Celular/inmunología , Inmunocompetencia/inmunología , Inmunoterapia Adoptiva , Selectina L/inmunología , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Multipotentes/inmunología , Subgrupos de Linfocitos T/inmunología
11.
Blood ; 135(19): 1650-1660, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32076701

RESUMEN

We previously reported durable responses in relapsed or refractory (R/R) chronic lymphocytic leukemia (CLL) patients treated with CD19-targeted chimeric antigen receptor-engineered (CD19 CAR) T-cell immunotherapy after ibrutinib failure. Because preclinical studies showed that ibrutinib could improve CAR T cell-antitumor efficacy and reduce cytokine release syndrome (CRS), we conducted a pilot study to evaluate the safety and feasibility of administering ibrutinib concurrently with CD19 CAR T-cell immunotherapy. Nineteen CLL patients were included. The median number of prior therapies was 5, and 17 patients (89%) had high-risk cytogenetics (17p deletion and/or complex karyotype). Ibrutinib was scheduled to begin ≥2 weeks before leukapheresis and continue for ≥3 months after CAR T-cell infusion. CD19 CAR T-cell therapy with concurrent ibrutinib was well tolerated; 13 patients (68%) received ibrutinib as planned without dose reduction. The 4-week overall response rate using 2018 International Workshop on CLL (iwCLL) criteria was 83%, and 61% achieved a minimal residual disease (MRD)-negative marrow response by IGH sequencing. In this subset, the 1-year overall survival and progression-free survival (PFS) probabilities were 86% and 59%, respectively. Compared with CLL patients treated with CAR T cells without ibrutinib, CAR T cells with concurrent ibrutinib were associated with lower CRS severity and lower serum concentrations of CRS-associated cytokines, despite equivalent in vivo CAR T-cell expansion. The 1-year PFS probabilities in all evaluable patients were 38% and 50% after CD19 CAR T-cell therapy, with and without concurrent ibrutinib, respectively (P = .91). CD19 CAR T cells with concurrent ibrutinib for R/R CLL were well tolerated, with low CRS severity, and led to high rates of MRD-negative response by IGH sequencing.


Asunto(s)
Adenina/análogos & derivados , Antígenos CD19/inmunología , Resistencia a Antineoplásicos , Inmunoterapia Adoptiva/métodos , Leucemia Linfocítica Crónica de Células B/terapia , Piperidinas/uso terapéutico , Receptores de Antígenos de Linfocitos T/inmunología , Terapia Recuperativa , Adenina/uso terapéutico , Adulto , Anciano , Terapia Combinada , Estudios de Factibilidad , Femenino , Estudios de Seguimiento , Humanos , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos
12.
Blood ; 134(19): 1585-1597, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31558469

RESUMEN

B-cell maturation antigen (BCMA) is a validated target for chimeric antigen receptor (CAR) T-cell therapy in multiple myeloma (MM). Despite promising objective response rates, most patients relapse, and low levels of BCMA on a subset of tumor cells has been suggested as a probable escape mechanism. BCMA is actively cleaved from the tumor cell surface by the ubiquitous multisubunit γ-secretase (GS) complex, which reduces ligand density on tumor cells for CAR T-cell recognition and releases a soluble BCMA (sBCMA) fragment capable of inhibiting CAR T-cell function. Sufficient sBCMA can accumulate in the bone marrow of MM patients to inhibit CAR T-cell recognition of tumor cells, and potentially limit efficacy of BCMA-directed adoptive T-cell therapy. We investigated whether blocking BCMA cleavage by small-molecule GS inhibitors (GSIs) could augment BCMA-targeted CAR T-cell therapy. We found that exposure of myeloma cell lines and patient tumor samples to GSIs markedly increased surface BCMA levels in a dose-dependent fashion, concurrently decreased sBCMA concentrations, and improved tumor recognition by CAR T cells in vitro. GSI treatment of MM tumor-bearing NOD/SCID/γc-/- mice increased BCMA expression on tumor cells, decreased sBCMA in peripheral blood, and improved antitumor efficacy of BCMA-targeted CAR T-cell therapy. Importantly, short-term GSI administration to MM patients markedly increases the percentage of BCMA+ tumor cells, and the levels of BCMA surface expression in vivo. Based on these data, a US Food and Drug Administration (FDA)-approved clinical trial has been initiated, combining GSI with concurrent BCMA CAR T-cell therapy. This trial was registered at www.clinicaltrials.gov as #NCT03502577.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Antígeno de Maduración de Linfocitos B/metabolismo , Inmunoterapia Adoptiva/métodos , Mieloma Múltiple , Animales , Benzazepinas/farmacología , Ensayos Clínicos como Asunto , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mieloma Múltiple/terapia , Receptores Quiméricos de Antígenos , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Blood ; 134(7): 636-640, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31648294

RESUMEN

Patients with follicular lymphoma (FL) with early relapse after initial chemoimmunotherapy, refractory disease, or histologic transformation (tFL) have limited progression-free and overall survival. We report efficacy and long-term follow-up of 21 patients with relapsed/refractory (R/R) FL (n = 8) and tFL (n = 13) treated on a phase 1/2 clinical trial with cyclophosphamide and fludarabine lymphodepletion followed by infusion of 2 × 106 CD19-directed chimeric antigen receptor-modified T (CAR-T) cells per kilogram. The complete remission (CR) rates by the Lugano criteria were 88% and 46% for patients with FL and tFL, respectively. All patients with FL who achieved CR remained in remission at a median follow-up of 24 months. The median duration of response for patients with tFL was 10.2 months at a median follow-up of 38 months. Cytokine release syndrome occurred in 50% and 39%, and neurotoxicity in 50% and 23% of patients with FL and tFL, respectively, with no severe adverse events (grade ≥3). No significant differences in CAR-T cell in vivo expansion/persistence were observed between FL and tFL patients. CD19 CAR-T cell immunotherapy is highly effective in adults with clinically aggressive R/R FL with or without transformation, with durable remission in a high proportion of FL patients. This trial was registered at clinicaltrials.gov as #NCT01865617.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Linfoma Folicular/terapia , Receptores de Antígenos de Linfocitos T/uso terapéutico , Anciano , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Depleción Linfocítica/métodos , Masculino , Persona de Mediana Edad , Inducción de Remisión
14.
Blood ; 133(15): 1652-1663, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30728140

RESUMEN

Autologous T cells engineered to express a CD19-specific chimeric antigen receptor (CAR) have produced impressive minimal residual disease-negative (MRD-negative) complete remission (CR) rates in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL). However, the factors associated with durable remissions after CAR T-cell therapy have not been fully elucidated. We studied patients with relapsed/refractory B-ALL enrolled in a phase 1/2 clinical trial evaluating lymphodepletion chemotherapy followed by CD19 CAR T-cell therapy at our institution. Forty-five (85%) of 53 patients who received CD19 CAR T-cell therapy and were evaluable for response achieved MRD-negative CR by high-resolution flow cytometry. With a median follow-up of 30.9 months, event-free survival (EFS) and overall survival (OS) were significantly better in the patients who achieved MRD-negative CR compared with those who did not (median EFS, 7.6 vs 0.8 months; P < .0001; median OS, 20.0 vs 5.0 months; P = .014). In patients who achieved MRD-negative CR by flow cytometry, absence of the index malignant clone by IGH deep sequencing was associated with better EFS (P = .034). Stepwise multivariable modeling in patients achieving MRD-negative CR showed that lower prelymphodepletion lactate dehydrogenase concentration (hazard ratio [HR], 1.38 per 100 U/L increment increase), higher prelymphodepletion platelet count (HR, 0.74 per 50 000/µL increment increase), incorporation of fludarabine into the lymphodepletion regimen (HR, 0.25), and allogeneic hematopoietic cell transplantation (HCT) after CAR T-cell therapy (HR, 0.39) were associated with better EFS. These data allow identification of patients at higher risk of relapse after CAR T-cell immunotherapy who might benefit from consolidation strategies such as allogeneic HCT. This trial was registered at www.clinicaltrials.gov as #NCT01865617.


Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Inducción de Remisión/métodos , Adulto , Supervivencia sin Enfermedad , Femenino , Trasplante de Células Madre Hematopoyéticas , Humanos , Depleción Linfocítica , Masculino , Persona de Mediana Edad , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidad , Receptores Quiméricos de Antígenos , Terapia Recuperativa/métodos , Adulto Joven
15.
Blood ; 133(17): 1876-1887, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-30782611

RESUMEN

Factors associated with durable remission after CD19 chimeric antigen receptor (CAR)-modified T-cell immunotherapy for aggressive B-cell non-Hodgkin lymphoma (NHL) have not been identified. We report multivariable analyses of factors affecting response and progression-free survival (PFS) in patients with aggressive NHL treated with cyclophosphamide and fludarabine lymphodepletion followed by 2 × 106 CD19-directed CAR T cells/kg. The best overall response rate was 51%, with 40% of patients achieving complete remission. The median PFS of patients with aggressive NHL who achieved complete remission was 20.0 months (median follow-up, 26.9 months). Multivariable analysis of clinical and treatment characteristics, serum biomarkers, and CAR T-cell manufacturing and pharmacokinetic data showed that a lower pre-lymphodepletion serum lactate dehydrogenase (LDH) level and a favorable cytokine profile, defined as serum day 0 monocyte chemoattractant protein-1 (MCP-1) and peak interleukin-7 (IL-7) concentrations above the median, were associated with better PFS. MCP-1 and IL-7 concentrations increased after lymphodepletion, and higher intensity of cyclophosphamide and fludarabine lymphodepletion was associated with higher probability of a favorable cytokine profile. PFS was superior in patients who received high-intensity lymphodepletion and achieved a favorable cytokine profile compared with those who received the same intensity of lymphodepletion without achieving a favorable cytokine profile. Even in high-risk patients with pre-lymphodepletion serum LDH levels above normal, a favorable cytokine profile after lymphodepletion was associated with a low risk of a PFS event. Strategies to augment the cytokine response to lymphodepletion could be tested in future studies of CD19 CAR T-cell immunotherapy for aggressive B-cell NHL. This trial was registered at www.clinicaltrials.gov as #NCT01865617.


Asunto(s)
Antígenos CD19/inmunología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Inmunoterapia/métodos , Depleción Linfocítica/métodos , Linfoma no Hodgkin/mortalidad , Receptores de Antígenos de Linfocitos T/inmunología , Terapia Combinada , Ciclofosfamida/administración & dosificación , Femenino , Estudios de Seguimiento , Humanos , Linfoma no Hodgkin/inmunología , Linfoma no Hodgkin/patología , Linfoma no Hodgkin/terapia , Masculino , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia , Vidarabina/administración & dosificación , Vidarabina/análogos & derivados
16.
J Immunol ; 202(2): 476-483, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30541882

RESUMEN

With age, the immune system becomes less effective, causing increased susceptibility to infection. Chronic CMV infection further impairs immune function and is associated with increased mortality in the elderly. CMV exposure elicits massive CD8+ T cell clonal expansions and diminishes the cytotoxic T cell response to subsequent infections, leading to the hypothesis that to maintain homeostasis, T cell clones are expelled from the repertoire, reducing T cell repertoire diversity and diminishing the ability to combat new infections. However, in humans, the impact of CMV infection on the structure and diversity of the underlying T cell repertoire remains uncharacterized. Using TCR ß-chain immunosequencing, we observed that the proportion of the peripheral blood T cell repertoire composed of the most numerous 0.1% of clones is larger in the CMV seropositive and gradually increases with age. We found that the T cell repertoire in the elderly grows to accommodate CMV-driven clonal expansions while preserving its underlying diversity and clonal structure. Our observations suggest that the maintenance of large CMV-reactive T cell clones throughout life does not compromise the underlying repertoire. Alternatively, we propose that the diminished immunity in elderly individuals with CMV is due to alterations in cellular function rather than a reduction in CD8+ T cell repertoire diversity.


Asunto(s)
Envejecimiento/fisiología , Linfocitos T CD8-positivos/inmunología , Citomegalovirus/inmunología , Citomegalovirus/fisiología , Genes Codificadores de la Cadena beta de los Receptores de Linfocito T/genética , Linfocitos T Citotóxicos/inmunología , Anciano , Anciano de 80 o más Años , Proliferación Celular , Senescencia Celular , Selección Clonal Mediada por Antígenos , Células Clonales , Estudios de Cohortes , Infecciones por Citomegalovirus/inmunología , Humanos , Tolerancia Inmunológica
17.
Blood ; 131(24): 2621-2629, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29728402

RESUMEN

The ability to harness a patient's immune system to target malignant cells is now transforming the treatment of many cancers, including hematologic malignancies. The adoptive transfer of T cells selected for tumor reactivity or engineered with natural or synthetic receptors has emerged as an effective modality, even for patients with tumors that are refractory to conventional therapies. The most notable example of adoptive cell therapy is with T cells engineered to express synthetic chimeric antigen receptors (CARs) that reprogram their specificity to target CD19. CAR T cells have shown remarkable antitumor activity in patients with refractory B-cell malignancies. Ongoing research is focused on understanding the mechanisms of incomplete tumor elimination, reducing toxicities, preventing antigen escape, and identifying suitable targets and strategies based on established and emerging principles of synthetic biology for extending this approach to other hematologic malignancies. This review will discuss the current status, challenges, and potential future applications of CAR T-cell therapy in hematologic malignancies.


Asunto(s)
Traslado Adoptivo/métodos , Antígenos CD19/inmunología , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/terapia , Receptores Quiméricos de Antígenos/inmunología , Animales , Ingeniería Genética/métodos , Neoplasias Hematológicas/patología , Humanos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/uso terapéutico , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/trasplante , Escape del Tumor
18.
Blood ; 131(1): 121-130, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29038338

RESUMEN

Lymphodepletion chemotherapy with CD19-targeted chimeric antigen receptor-modified T (CAR-T)-cell immunotherapy is a novel treatment for refractory or relapsed B-cell malignancies. Infectious complications of this approach have not been systematically studied. We evaluated infections occurring between days 0 to 90 in 133 patients treated with CD19 CAR-T cells in a phase 1/2 study. We used Poisson and Cox regression to evaluate pre- and posttreatment risk factors for infection, respectively. The cohort included patients with acute lymphoblastic leukemia (ALL; n = 47), chronic lymphocytic leukemia (n = 24), and non-Hodgkin lymphoma (n = 62). There were 43 infections in 30 of 133 patients (23%) within 28 days after CAR-T-cell infusion with an infection density of 1.19 infections for every 100 days at risk. There was a lower infection density of 0.67 between days 29 and 90 (P = .02). The first infection occurred a median of 6 days after CAR-T-cell infusion. Six patients (5%) developed invasive fungal infections and 5 patients (4%) had life-threatening or fatal infections. Patients with ALL, ≥4 prior antitumor regimens, and receipt of the highest CAR-T-cell dose (2 × 107 cells per kg) had a higher infection density within 28 days in an adjusted model of baseline characteristics. Cytokine release syndrome (CRS) severity was the only factor after CAR-T-cell infusion associated with infection in a multivariable analysis. The incidence of infections was comparable to observations from clinical trials of salvage chemoimmunotherapies in similar patients. This trial was registered at www.clinicaltrials.gov as #NCT01865617.


Asunto(s)
Inmunoterapia/efectos adversos , Infecciones/epidemiología , Leucemia Linfocítica Crónica de Células B/terapia , Linfoma no Hodgkin/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/trasplante , Adulto , Anciano , Tratamiento Basado en Trasplante de Células y Tejidos/efectos adversos , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Infecciones/etiología , Leucemia Linfocítica Crónica de Células B/inmunología , Linfoma no Hodgkin/inmunología , Masculino , Persona de Mediana Edad , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Pronóstico , Índice de Severidad de la Enfermedad , Linfocitos T/inmunología , Estados Unidos/epidemiología , Adulto Joven
19.
J Immunol ; 200(2): 459-468, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29311388

RESUMEN

Immunotherapy with T cells genetically modified to express chimeric Ag receptors (CARs) that target tumor-associated molecules have impressive efficacy in hematological malignancies. The field has now embraced the challenge of applying this approach to treat common epithelial malignancies, which make up the majority of cancer cases but evade immunologic attack by a variety of subversive mechanisms. In this study, we review the principles that have guided CAR T cell design and the extraordinary clinical results being achieved in B cell malignancies targeting CD19 with a single infusion of engineered T cells. This success has raised expectations that CAR T cells can be applied to solid tumors, but numerous obstacles must be overcome to achieve the success observed in hematologic cancers. Potential solutions driven by advances in genetic engineering, synthetic biology, T cell biology, and improved tumor models that recapitulate the obstacles in human tumors are discussed.


Asunto(s)
Antígenos de Neoplasias/inmunología , Ingeniería Genética , Inmunoterapia Adoptiva , Neoplasias/inmunología , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Estudios Clínicos como Asunto , Humanos , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/metabolismo , Investigación Biomédica Traslacional , Resultado del Tratamiento
20.
Semin Immunol ; 28(1): 28-34, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26976826

RESUMEN

Adoptive transfer of primary (unmodified) or genetically engineered antigen-specific T cells has demonstrated astonishing clinical results in the treatment of infections and some malignancies. Besides the definition of optimal targets and antigen receptors, the differentiation status of transferred T cells is emerging as a crucial parameter for generating cell products with optimal efficacy and safety profiles. Long-living memory T cells subdivide into phenotypically as well as functionally different subsets (e.g. central memory, effector memory, tissue-resident memory T cells). This diversification process is crucial for effective immune protection, with probably distinct dependencies on the presence of individual subsets dependent on the disease to which the immune response is directed as well as its organ location. Adoptive T cell therapy intends to therapeutically transfer defined T cell immunity into patients. Efficacy of this approach often requires long-term maintenance of transferred cells, which depends on the presence and persistence of memory T cells. However, engraftment and survival of highly differentiated memory T cell subsets upon adoptive transfer is still difficult to achieve. Therefore, the recent observation that a distinct subset of weakly differentiated memory T cells shows all characteristics of adult tissue stem cells and can reconstitute all types of effector and memory T cell subsets, became highly relevant. We here review our current understanding of memory subset formation and T cell subset purification, and its implications for adoptive immunotherapy.


Asunto(s)
Memoria Inmunológica , Inmunoterapia Adoptiva/métodos , Infecciones/terapia , Neoplasias/terapia , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología , Células Madre Adultas/fisiología , Animales , Diferenciación Celular , Separación Celular , Supervivencia Celular , Humanos , Infecciones/inmunología , Neoplasias/inmunología , Subgrupos de Linfocitos T/trasplante , Linfocitos T/trasplante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA