RESUMEN
[This corrects the article DOI: 10.1371/journal.pgen.1002653.].
RESUMEN
Colour sidedness is a dominantly inherited phenotype of cattle characterized by the polarization of pigmented sectors on the flanks, snout and ear tips. It is also referred to as 'lineback' or 'witrik' (which means white back), as colour-sided animals typically display a white band along their spine. Colour sidedness is documented at least since the Middle Ages and is presently segregating in several cattle breeds around the globe, including in Belgian blue and brown Swiss. Here we report that colour sidedness is determined by a first allele on chromosome 29 (Cs(29)), which results from the translocation of a 492-kilobase chromosome 6 segment encompassing KIT to chromosome 29, and a second allele on chromosome 6 (Cs(6)), derived from the first by repatriation of fused 575-kilobase chromosome 6 and 29 sequences to the KIT locus. We provide evidence that both translocation events involved circular intermediates. This is the first example, to our knowledge, of a phenotype determined by homologous yet non-syntenic alleles that result from a novel copy-number-variant-generating mechanism.
Asunto(s)
Bovinos/genética , Cromosomas de los Mamíferos/genética , Color del Cabello/genética , Translocación Genética/genética , Alelos , Animales , Bovinos/clasificación , Mapeo Cromosómico , Variaciones en el Número de Copia de ADN/genética , Duplicación de Gen/genética , Fusión Génica/genética , Estudio de Asociación del Genoma Completo , Genotipo , Hibridación Fluorescente in Situ , Fenotipo , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Yakutia, Sakha Republic, in the Siberian Far East, represents one of the coldest places on Earth, with winter record temperatures dropping below -70 °C. Nevertheless, Yakutian horses survive all year round in the open air due to striking phenotypic adaptations, including compact body conformations, extremely hairy winter coats, and acute seasonal differences in metabolic activities. The evolutionary origins of Yakutian horses and the genetic basis of their adaptations remain, however, contentious. Here, we present the complete genomes of nine present-day Yakutian horses and two ancient specimens dating from the early 19th century and â¼5,200 y ago. By comparing these genomes with the genomes of two Late Pleistocene, 27 domesticated, and three wild Przewalski's horses, we find that contemporary Yakutian horses do not descend from the native horses that populated the region until the mid-Holocene, but were most likely introduced following the migration of the Yakut people a few centuries ago. Thus, they represent one of the fastest cases of adaptation to the extreme temperatures of the Arctic. We find cis-regulatory mutations to have contributed more than nonsynonymous changes to their adaptation, likely due to the comparatively limited standing variation within gene bodies at the time the population was founded. Genes involved in hair development, body size, and metabolic and hormone signaling pathways represent an essential part of the Yakutian horse adaptive genetic toolkit. Finally, we find evidence for convergent evolution with native human populations and woolly mammoths, suggesting that only a few evolutionary strategies are compatible with survival in extremely cold environments.
Asunto(s)
Adaptación Fisiológica/genética , Frío , Caballos/fisiología , Animales , Regiones Árticas , Evolución Molecular , Genoma , Caballos/genética , SiberiaRESUMEN
BACKGROUND: To date, genome-scale analyses in the domestic horse have been limited by suboptimal single nucleotide polymorphism (SNP) density and uneven genomic coverage of the current SNP genotyping arrays. The recent availability of whole genome sequences has created the opportunity to develop a next generation, high-density equine SNP array. RESULTS: Using whole genome sequence from 153 individuals representing 24 distinct breeds collated by the equine genomics community, we cataloged over 23 million de novo discovered genetic variants. Leveraging genotype data from individuals with both whole genome sequence, and genotypes from lower-density, legacy SNP arrays, a subset of ~5 million high-quality, high-density array candidate SNPs were selected based on breed representation and uniform spacing across the genome. Considering probe design recommendations from a commercial vendor (Affymetrix, now Thermo Fisher Scientific) a set of ~2 million SNPs were selected for a next-generation high-density SNP chip (MNEc2M). Genotype data were generated using the MNEc2M array from a cohort of 332 horses from 20 breeds and a lower-density array, consisting of ~670 thousand SNPs (MNEc670k), was designed for genotype imputation. CONCLUSIONS: Here, we document the steps taken to design both the MNEc2M and MNEc670k arrays, report genomic and technical properties of these genotyping platforms, and demonstrate the imputation capabilities of these tools for the domestic horse.
Asunto(s)
Técnicas de Genotipaje/métodos , Caballos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple , Animales , Frecuencia de los Genes , Técnicas de Genotipaje/normas , Desequilibrio de Ligamiento , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Estándares de Referencia , Secuenciación Completa del GenomaRESUMEN
Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an F(ST)-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse.
Asunto(s)
Estudio de Asociación del Genoma Completo , Caballos/genética , Miostatina/genética , Selección Genética , Animales , Evolución Biológica , Cruzamiento , Genotipo , Haplotipos , Fenotipo , Polimorfismo de Nucleótido SimpleRESUMEN
During fetal development neural-crest-derived melanoblasts migrate across the entire body surface and differentiate into melanocytes, the pigment-producing cells. Alterations in this precisely regulated process can lead to white spotting patterns. White spotting patterns in horses are a complex trait with a large phenotypic variance ranging from minimal white markings up to completely white horses. The "splashed white" pattern is primarily characterized by an extremely large blaze, often accompanied by extended white markings at the distal limbs and blue eyes. Some, but not all, splashed white horses are deaf. We analyzed a Quarter Horse family segregating for the splashed white coat color. Genome-wide linkage analysis in 31 horses gave a positive LOD score of 1.6 in a region on chromosome 6 containing the PAX3 gene. However, the linkage data were not in agreement with a monogenic inheritance of a single fully penetrant mutation. We sequenced the PAX3 gene and identified a missense mutation in some, but not all, splashed white Quarter Horses. Genome-wide association analysis indicated a potential second signal near MITF. We therefore sequenced the MITF gene and found a 10 bp insertion in the melanocyte-specific promoter. The MITF promoter variant was present in some splashed white Quarter Horses from the studied family, but also in splashed white horses from other horse breeds. Finally, we identified two additional non-synonymous mutations in the MITF gene in unrelated horses with white spotting phenotypes. Thus, several independent mutations in MITF and PAX3 together with known variants in the EDNRB and KIT genes explain a large proportion of horses with the more extreme white spotting phenotypes.
Asunto(s)
Caballos/genética , Factor de Transcripción Asociado a Microftalmía/genética , Mutación , Factores de Transcripción Paired Box/genética , Pigmentación/genética , Animales , Secuencia de Bases , Mapeo Cromosómico , Color , Ligamiento Genético , Genoma , Estudio de Asociación del Genoma Completo , Color del Cabello , Escala de Lod , Melanocitos/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Datos de Secuencia Molecular , Fenotipo , Regiones Promotoras GenéticasRESUMEN
BACKGROUND: A cost-effective strategy to increase the density of available markers within a population is to sequence a small proportion of the population and impute whole-genome sequence data for the remaining population. Increased densities of typed markers are advantageous for genome-wide association studies (GWAS) and genomic predictions. METHODS: We obtained genotypes for 54 602 SNPs (single nucleotide polymorphisms) in 1077 Franches-Montagnes (FM) horses and Illumina paired-end whole-genome sequencing data for 30 FM horses and 14 Warmblood horses. After variant calling, the sequence-derived SNP genotypes (~13 million SNPs) were used for genotype imputation with the software programs Beagle, Impute2 and FImpute. RESULTS: The mean imputation accuracy of FM horses using Impute2 was 92.0%. Imputation accuracy using Beagle and FImpute was 74.3% and 77.2%, respectively. In addition, for Impute2 we determined the imputation accuracy of all individual horses in the validation population, which ranged from 85.7% to 99.8%. The subsequent inclusion of Warmblood sequence data further increased the correlation between true and imputed genotypes for most horses, especially for horses with a high level of admixture. The final imputation accuracy of the horses ranged from 91.2% to 99.5%. CONCLUSIONS: Using Impute2, the imputation accuracy was higher than 91% for all horses in the validation population, which indicates that direct imputation of 50k SNP-chip data to sequence level genotypes is feasible in the FM population. The individual imputation accuracy depended mainly on the applied software and the level of admixture.
Asunto(s)
Estudio de Asociación del Genoma Completo , Caballos/genética , Polimorfismo de Nucleótido Simple , Animales , Femenino , Genómica/métodos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Linaje , Programas InformáticosRESUMEN
In livestock production, animal-related data are often registered in specialised databases and are usually not interconnected, except for a common identifier. Analysis of combined datasets and the possible inclusion of third-party information can provide a more complete picture or reveal complex relationships. The aim of this study was to develop a risk index to predict farms with an increased likelihood for animal welfare violations, defined as non-compliance during on-farm welfare inspections. A data-driven approach was chosen for this purpose, focusing on the combination of existing Swiss government databases and registers. Individual animal-level data were aggregated at the herd level. Since data collection and availability were best for cattle and pigs, the focus was on these two livestock species. We present machine learning models that can be used as a tool to plan and optimise risk-based on-farm welfare inspections by proposing a consolidated list of priority holdings to be visited. The results of previous on-farm welfare inspections were used to calibrate a binary welfare index, which is the prediction goal. The risk index is based on proxy information, such as the participation in animal welfare programmes with structured housing and outdoor access, herd type and size, or animal movement data. Since transparency of the model is critical both for public acceptance of such a data-driven index and farm control planning, the Random Forest model, for which the decision process can be illustrated, was investigated in depth. Using historical inspection data with an overall low prevalence of violations of approximately 4% for both species, the developed index was able to predict violations with a sensitivity of 81.2 and 79.5% for cattle and pig farms, respectively. The study has shown that combining multiple and heterogeneous data sources improves the quality of the models. Furthermore, privacy-preserving methods are applied to a research environment to explore the available data before restricting the feature space to the most relevant. This study demonstrates that data-driven monitoring of livestock populations is already possible with the existing datasets and the models developed can be a useful tool to plan and conduct risk-based animal welfare inspection.
RESUMEN
UNLABELLED: The treatment of blunt splenic injuries (BSI) has undergone a significant shift away from an operative approach to a conservative treatment regimen in the last decades. Data concerning long-term follow-up of children sustaining BSI are largely confined to telephone surveys. Children treated with BSI over a 33-year period were analyzed. In order to describe the changing treatment, patients were divided into two groups: group I included children treated between 1977 and 1999; group II children treated between 2000 and 2009. Additionally, patients treated nonoperatively between 2000 and 2009 were invited for a sonographic follow-up examination. In group I 81 patients and in group II 89 patients were treated. An increase of male patients from 69 to 88 % was observed, comparing the two eras. While children treated in the earlier period were 8.8-years-old mean (range 1 to 15), the patients treated between 2000 and 2009 were older (mean 10.4 years, range 1 to 17). Between 1977 and 1999, 79 % of the patients were treated nonoperatively. This rate considerably increased to 94 % in the second era. Follow-up examination was performed with a mean age of 6 years (range 1 to 11 years) post-injury. In 79 % of the cases, the spleen healed without sonographic long-term sequelae. In the remaining 21 % of the patients, a scar formation could be demonstrated. CONCLUSION: We were able to confirm that the majority of children sustaining BSI can be safely treated conservatively.
Asunto(s)
Bazo/lesiones , Heridas no Penetrantes/terapia , Adolescente , Austria , Niño , Preescolar , Cicatriz/diagnóstico por imagen , Cicatriz/etiología , Femenino , Estudios de Seguimiento , Humanos , Lactante , Masculino , Estudios Retrospectivos , Bazo/diagnóstico por imagen , Bazo/cirugía , Esplenectomía/estadística & datos numéricos , Tomografía Computarizada por Rayos X/estadística & datos numéricos , Resultado del Tratamiento , Ultrasonografía , Heridas no Penetrantes/diagnóstico por imagen , Heridas no Penetrantes/cirugíaRESUMEN
Variants in the EDNRB, KIT, MITF, PAX3 and TRPM1 genes are known to cause white spotting phenotypes in horses, which can range from the common white markings up to completely white horses. In this study, we investigated these candidate genes in 169 horses with white spotting phenotypes not explained by the previously described variants. We identified a novel missense variant, PAX3:p.Pro32Arg, in Appaloosa horses with a splashed white phenotype in addition to their leopard complex spotting patterns. We also found three novel variants in the KIT gene. The splice site variant c.1346+1G>A occurred in a Swiss Warmblood horse with a pronounced depigmentation phenotype. The missense variant p.Tyr441Cys was present in several part-bred Arabians with sabino-like depigmentation phenotypes. Finally, we provide evidence suggesting that the common and widely distributed KIT:p.Arg682His variant has a very subtle white-increasing effect, which is much less pronounced than the effect of the other described KIT variants. We termed the new KIT variants W18-W20 to provide a simple and unambiguous nomenclature for future genetic testing applications.
Asunto(s)
Cabello/fisiología , Caballos/genética , Factores de Transcripción Paired Box/genética , Fenotipo , Pigmentación/genética , Proteínas Proto-Oncogénicas c-kit/genética , Animales , Caballos/fisiología , Mutación Missense/genéticaRESUMEN
The Y chromosome is a valuable genetic marker for studying the origin and influence of paternal lineages in populations. In this study, we conducted Y-chromosomal lineage-tracing in Arabian horses. First, we resolved a Y haplotype phylogeny based on the next generation sequencing data of 157 males from several breeds. Y-chromosomal haplotypes specific for Arabian horses were inferred by genotyping a collection of 145 males representing most Arabian sire lines that are active around the globe. These lines formed three discrete haplogroups, and the same haplogroups were detected in Arabian populations native to the Middle East. The Arabian haplotypes were clearly distinct from the ones detected in Akhal Tekes, Turkoman horses, and the progeny of two Thoroughbred foundation sires. However, a haplotype introduced into the English Thoroughbred by the stallion Byerley Turk (1680), was shared among Arabians, Turkomans, and Akhal Tekes, which opens a discussion about the historic connections between Oriental horse types. Furthermore, we genetically traced Arabian sire line breeding in the Western World over the past 200 years. This confirmed a strong selection for relatively few male lineages and uncovered incongruences to written pedigree records. Overall, we demonstrate how fine-scaled Y-analysis contributes to a better understanding of the historical development of horse breeds.
Asunto(s)
Variación Genética , Cromosoma Y , Animales , Femenino , Haplotipos , Caballos/genética , Masculino , Linaje , Filogenia , Cromosoma Y/genéticaRESUMEN
Several bacterial strains isolated from granitic rock material in front of the Damma glacier (Central Swiss Alps) were shown (i) to grow in the presence of granite powder and a glucose-NH(4)Cl minimal medium without additional macro- or micronutrients and (ii) to produce weathering-associated agents. In particular, four bacterial isolates (one isolate each of Arthrobacter sp., Janthinobacterium sp., Leifsonia sp., and Polaromonas sp.) were weathering associated. In comparison to what was observed in abiotic experiments, the presence of these strains caused a significant increase of granite dissolution (as measured by the release of Fe, Ca, K, Mg, and Mn). These most promising weathering-associated bacterial species exhibited four main features rendering them more efficient in mineral dissolution than the other investigated isolates: (i) a major part of their bacterial cells was attached to the granite surfaces and not suspended in solution, (ii) they secreted the largest amounts of oxalic acid, (iii) they lowered the pH of the solution, and (iv) they formed significant amounts of HCN. As far as we know, this is the first report showing that the combined action of oxalic acid and HCN appears to be associated with enhanced elemental release from granite, in particular of Fe. This suggests that extensive microbial colonization of the granite surfaces could play a crucial role in the initial soil formation in previously glaciated mountain areas.
Asunto(s)
Bacterias/metabolismo , Cubierta de Hielo/microbiología , Dióxido de Silicio/metabolismo , Microbiología del Suelo , Amoníaco/metabolismo , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Adhesión Bacteriana , Medios de Cultivo/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Glucosa/metabolismo , Cianuro de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Metales/análisis , Datos de Secuencia Molecular , Ácido Oxálico/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , SuizaRESUMEN
White coat color has been a highly valued trait in horses for at least 2,000 years. Dominant white (W) is one of several known depigmentation phenotypes in horses. It shows considerable phenotypic variation, ranging from approximately 50% depigmented areas up to a completely white coat. In the horse, the four depigmentation phenotypes roan, sabino, tobiano, and dominant white were independently mapped to a chromosomal region on ECA 3 harboring the KIT gene. KIT plays an important role in melanoblast survival during embryonic development. We determined the sequence and genomic organization of the approximately 82 kb equine KIT gene. A mutation analysis of all 21 KIT exons in white Franches-Montagnes Horses revealed a nonsense mutation in exon 15 (c.2151C>G, p.Y717X). We analyzed the KIT exons in horses characterized as dominant white from other populations and found three additional candidate causative mutations. Three almost completely white Arabians carried a different nonsense mutation in exon 4 (c.706A>T, p.K236X). Six Camarillo White Horses had a missense mutation in exon 12 (c.1805C>T, p.A602V), and five white Thoroughbreds had yet another missense mutation in exon 13 (c.1960G>A, p.G654R). Our results indicate that the dominant white color in Franches-Montagnes Horses is caused by a nonsense mutation in the KIT gene and that multiple independent mutations within this gene appear to be responsible for dominant white in several other modern horse populations.
Asunto(s)
Alelos , Genes Dominantes , Heterogeneidad Genética , Caballos/genética , Proteínas Proto-Oncogénicas c-kit/genética , Animales , Secuencia de Bases , Western Blotting , Cruzamiento , Citosina , Análisis Mutacional de ADN , Genoma , Guanina , Datos de Secuencia Molecular , Fenotipo , Polimorfismo Genético , Piel/metabolismoRESUMEN
Alopecia areata is a hair loss disorder in humans, dogs and horses with a suspected autoimmune aetiology targeting anagen hair follicles. Alopecia areata is only sporadically reported in cows. Recently, we observed several cases of suspected alopecia areata in Eringer cows. The aim of this study was to confirm the presumptive diagnosis of alopecia areata and to define the clinical phenotype and histopathological patterns, including characterization of the infiltrating inflammatory cells. Twenty Eringer cows with alopecia and 11 Eringer cows without skin problems were included in this study. Affected cows had either generalized or multifocal alopecia or hypotrichosis. The tail, forehead and distal extremities were usually spared. Punch biopsies were obtained from the centre and margin of alopecic lesions and normal haired skin. Histological examination revealed several alterations in anagen hair bulbs. These included peri- and intrabulbar lymphocytic infiltration, peribulbar fibrosis, degenerate matrix cells with clumped melanosomes and pigmentary incontinence. Mild lymphocytic infiltrative mural folliculitis was seen in the inferior segment and isthmus of the hair follicles. Hair shafts were often unpigmented and dysplastic. The large majority of infiltrating lymphocytes were CD3(+) T cells, whereas only occasional CD20(+) lymphocytes were present in the peribulbar infiltrate. Our findings confirm the diagnosis of T-cell-mediated alopecia areata in these cows. Alopecia areata appears to occur with increased frequency in the Eringer breed, but distinct predisposing factors could not be identified.
Asunto(s)
Alopecia Areata/veterinaria , Enfermedades de los Bovinos/patología , Alopecia Areata/diagnóstico , Alopecia Areata/patología , Animales , Biopsia con Aguja/veterinaria , Bovinos , Enfermedades de los Bovinos/diagnóstico , Femenino , Folículo Piloso/patología , Infiltración Neutrófila , Linaje , Piel/patologíaAsunto(s)
Crianza de Animales Domésticos , Investigación , Medicina Veterinaria , Animales , Caballos , SuizaRESUMEN
The roan coat color in horses is characterized by dispersed white hair and dark points. This phenotype segregates in a broad range of horse breeds, while the underlying genetic background is still unknown. Previous studies mapped the roan locus to the KIT gene on equine chromosome 3 (ECA3). However, this association could not be validated across different horse breeds. Performing a genome-wide association analysis (GWAS) in Noriker horses, we identified a single nucleotide polymorphism (SNP) (ECA3:g.79,543.439 A > G) in the intron 17 of the KIT gene. The G -allele of the top associated SNP was present in other roan horses, namely Quarter Horse, Murgese, Slovenian, and Belgian draught horse, while it was absent in a panel of 15 breeds, including 657 non-roan horses. In further 379 gray Lipizzan horses, eight animals exhibited a heterozygous genotype (A/G). Comparative whole-genome sequence analysis of the KIT region revealed two deletions in the downstream region (ECA3:79,533,217_79,533,224delTCGTCTTC; ECA3:79,533,282_79,533,285delTTCT) and a 3 bp deletion combined with 17 bp insertion in intron 20 of KIT (ECA3:79,588,128_79,588,130delinsTTATCTCTATAGTAGTT). Within the Noriker sample, these loci were in complete linkage disequilibrium (LD) with the identified top SNP. Based upon pedigree information and historical records, we were able to trace back the genetic origin of roan coat color to a baroque gene pool. Furthermore, our data suggest allelic heterogeneity and the existence of additional roan alleles in ponies and breeds related to the English Thoroughbred. In order to study the roan phenotype segregating in those breeds, further association and verification studies are required.
Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Alelos , Animales , Estudio de Asociación del Genoma Completo/veterinaria , Color del Cabello/genética , Caballos/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Colour phenotypes may have played a major role during early domestication events and initial selection among domestic animal species. As coat colours mostly follow a relatively simple mode of Mendelian inheritance, they have been among the first traits to be systematically analysed at the molecular level. As a result of the number of genetic tools developed during the past decade, horse coat colour tests have been designed and are now commercially available for some of the basic phenotypes. These tests enable breeders to verify segregation within particular pedigrees, to select specific colour phenotypes according to market demand or studbook policies and to avoid complex inherited diseases associated with some of the colour patterns. This paper reviews the relevance of the topic, describes all currently available tests for coat colours in horses and addresses also ongoing research in this field.
Asunto(s)
Color del Cabello/genética , Caballos/genética , Pigmentos Biológicos/genética , Animales , Variación Genética , GenotipoRESUMEN
Analysis of the Y chromosome is the best-established way to reconstruct paternal family history in humans. Here, we applied fine-scaled Y-chromosomal haplotyping in horses with biallelic markers and demonstrate the potential of our approach to address the ancestry of sire lines. We de novo assembled a draft reference of the male-specific region of the Y chromosome from Illumina short reads and then screened 5.8 million basepairs for variants in 130 specimens from intensively selected and rural breeds and nine Przewalski's horses. Among domestic horses we confirmed the predominance of a young'crown haplogroup' in Central European and North American breeds. Within the crown, we distinguished 58 haplotypes based on 211 variants, forming three major haplogroups. In addition to two previously characterised haplogroups, one observed in Arabian/Coldblooded and the other in Turkoman/Thoroughbred horses, we uncovered a third haplogroup containing Iberian lines and a North African Barb Horse. In a genealogical showcase, we distinguished the patrilines of the three English Thoroughbred founder stallions and resolved a historic controversy over the parentage of the horse 'Galopin', born in 1872. We observed two nearly instantaneous radiations in the history of Central and Northern European Y-chromosomal lineages that both occurred after domestication 5,500 years ago.
Asunto(s)
Haplotipos , Caballos/genética , Cromosoma Y/genética , Animales , Cruzamiento , Domesticación , Femenino , Variación Genética , Masculino , Linaje , FilogeniaRESUMEN
White markings and spotting patterns in animal species are thought to be a result of the domestication process. They often serve for the identification of individuals but sometimes are accompanied by complex pathological syndromes. In the Swiss Franches-Montagnes horse population, white markings increased vastly in size and occurrence during the past 30 years, although the breeding goal demands a horse with as little depigmented areas as possible. In order to improve selection and avoid more excessive depigmentation on the population level, we estimated population parameters and breeding values for white head and anterior and posterior leg markings. Heritabilities and genetic correlations for the traits were high (h(2) > 0.5). A strong positive correlation was found between the chestnut allele at the melanocortin-1-receptor gene locus and the extent of white markings. Segregation analysis revealed that our data fit best to a model including a polygenic effect and a biallelic locus with a dominant-recessive mode of inheritance. The recessive allele was found to be the white trait-increasing allele. Multilocus linkage disequilibrium analysis allowed the mapping of the putative major locus to a chromosomal region on ECA3q harboring the KIT gene.