RESUMEN
Climate and land-use changes are thought to be the greatest threats to biodiversity, but few studies have directly measured their simultaneous impacts on species distributions. We used a unique historic resource-early 20th-century bird surveys conducted by Joseph Grinnell and colleagues-paired with contemporary resurveys a century later to examine changes in bird distributions in California's Central Valley, one of the most intensively modified agricultural zones in the world and a region of heterogeneous climate change. We analyzed species- and community-level occupancy using multispecies occupancy models that explicitly accounted for imperfect detection probability, and developed a novel, simulation-based method to compare the relative influences of climate and land-use covariates on site-level species richness and beta diversity (measured by Jaccard similarity). Surprisingly, we show that mean occupancy, species richness and between-site similarity have remained remarkably stable over the past century. Stability in community-level metrics masked substantial changes in species composition; occupancy declines of some species were equally matched by increases in others, predominantly species with generalist or human-associated habitat preferences. Bird occupancy, richness and diversity within each era were driven most strongly by water availability (precipitation and percent water cover), indicating that both climate and land-use are important drivers of species distributions. Water availability had much stronger effects than temperature, urbanization and agricultural cover, which are typically thought to drive biodiversity decline.