Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(2): 355-370.e14, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625052

RESUMEN

We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer.


Asunto(s)
Células Germinativas/metabolismo , Neoplasias/patología , Variaciones en el Número de Copia de ADN , Bases de Datos Genéticas , Eliminación de Gen , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Células Germinativas/citología , Mutación de Línea Germinal , Humanos , Pérdida de Heterocigocidad/genética , Mutación Missense , Neoplasias/genética , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Supresoras de Tumor/genética
2.
Nucleic Acids Res ; 51(D1): D1230-D1241, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36373660

RESUMEN

CIViC (Clinical Interpretation of Variants in Cancer; civicdb.org) is a crowd-sourced, public domain knowledgebase composed of literature-derived evidence characterizing the clinical utility of cancer variants. As clinical sequencing becomes more prevalent in cancer management, the need for cancer variant interpretation has grown beyond the capability of any single institution. CIViC contains peer-reviewed, published literature curated and expertly-moderated into structured data units (Evidence Items) that can be accessed globally and in real time, reducing barriers to clinical variant knowledge sharing. We have extended CIViC's functionality to support emergent variant interpretation guidelines, increase interoperability with other variant resources, and promote widespread dissemination of structured curated data. To support the full breadth of variant interpretation from basic to translational, including integration of somatic and germline variant knowledge and inference of drug response, we have enabled curation of three new Evidence Types (Predisposing, Oncogenic and Functional). The growing CIViC knowledgebase has over 300 contributors and distributes clinically-relevant cancer variant data currently representing >3200 variants in >470 genes from >3100 publications.


Asunto(s)
Variación Genética , Neoplasias , Humanos , Neoplasias/genética , Bases del Conocimiento , Secuenciación de Nucleótidos de Alto Rendimiento
3.
Am J Hum Genet ; 107(1): 72-82, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32504544

RESUMEN

Genetics researchers and clinical professionals rely on diversity measures such as race, ethnicity, and ancestry (REA) to stratify study participants and patients for a variety of applications in research and precision medicine. However, there are no comprehensive, widely accepted standards or guidelines for collecting and using such data in clinical genetics practice. Two NIH-funded research consortia, the Clinical Genome Resource (ClinGen) and Clinical Sequencing Evidence-generating Research (CSER), have partnered to address this issue and report how REA are currently collected, conceptualized, and used. Surveying clinical genetics professionals and researchers (n = 448), we found heterogeneity in the way REA are perceived, defined, and measured, with variation in the perceived importance of REA in both clinical and research settings. The majority of respondents (>55%) felt that REA are at least somewhat important for clinical variant interpretation, ordering genetic tests, and communicating results to patients. However, there was no consensus on the relevance of REA, including how each of these measures should be used in different scenarios and what information they can convey in the context of human genetics. A lack of common definitions and applications of REA across the precision medicine pipeline may contribute to inconsistencies in data collection, missing or inaccurate classifications, and misleading or inconclusive results. Thus, our findings support the need for standardization and harmonization of REA data collection and use in clinical genetics and precision health research.


Asunto(s)
Recolección de Datos/normas , Pruebas Genéticas/normas , Adulto , Niño , Etnicidad , Femenino , Variación Genética/genética , Genómica/normas , Humanos , Masculino , Medicina de Precisión/normas , Prohibitinas , Encuestas y Cuestionarios
4.
Genet Med ; 24(5): 986-998, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35101336

RESUMEN

PURPOSE: Several professional societies have published guidelines for the clinical interpretation of somatic variants, which specifically address diagnostic, prognostic, and therapeutic implications. Although these guidelines for the clinical interpretation of variants include data types that may be used to determine the oncogenicity of a variant (eg, population frequency, functional, and in silico data or somatic frequency), they do not provide a direct, systematic, and comprehensive set of standards and rules to classify the oncogenicity of a somatic variant. This insufficient guidance leads to inconsistent classification of rare somatic variants in cancer, generates variability in their clinical interpretation, and, importantly, affects patient care. Therefore, it is essential to address this unmet need. METHODS: Clinical Genome Resource (ClinGen) Somatic Cancer Clinical Domain Working Group and ClinGen Germline/Somatic Variant Subcommittee, the Cancer Genomics Consortium, and the Variant Interpretation for Cancer Consortium used a consensus approach to develop a standard operating procedure (SOP) for the classification of oncogenicity of somatic variants. RESULTS: This comprehensive SOP has been developed to improve consistency in somatic variant classification and has been validated on 94 somatic variants in 10 common cancer-related genes. CONCLUSION: The comprehensive SOP is now available for classification of oncogenicity of somatic variants.


Asunto(s)
Genoma Humano , Neoplasias , Pruebas Genéticas/métodos , Variación Genética/genética , Genoma Humano/genética , Genómica/métodos , Humanos , Neoplasias/genética , Virulencia
5.
Genet Med ; 22(2): 245-257, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31690835

RESUMEN

PURPOSE: Copy-number analysis to detect disease-causing losses and gains across the genome is recommended for the evaluation of individuals with neurodevelopmental disorders and/or multiple congenital anomalies, as well as for fetuses with ultrasound abnormalities. In the decade that this analysis has been in widespread clinical use, tremendous strides have been made in understanding the effects of copy-number variants (CNVs) in both affected individuals and the general population. However, continued broad implementation of array and next-generation sequencing-based technologies will expand the types of CNVs encountered in the clinical setting, as well as our understanding of their impact on human health. METHODS: To assist clinical laboratories in the classification and reporting of CNVs, irrespective of the technology used to identify them, the American College of Medical Genetics and Genomics has developed the following professional standards in collaboration with the National Institutes of Health (NIH)-funded Clinical Genome Resource (ClinGen) project. RESULTS: This update introduces a quantitative, evidence-based scoring framework; encourages the implementation of the five-tier classification system widely used in sequence variant classification; and recommends "uncoupling" the evidence-based classification of a variant from its potential implications for a particular individual. CONCLUSION: These professional standards will guide the evaluation of constitutional CNVs and encourage consistency and transparency across clinical laboratories.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Pruebas Genéticas/normas , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Anomalías Múltiples/genética , Consenso , Variación Genética/genética , Genoma Humano/genética , Genómica/normas , Humanos , Mutación/genética , Estados Unidos
6.
Genet Med ; 21(7): 1507-1516, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30523343

RESUMEN

PURPOSE: Gene-disease associations implicated in hereditary colorectal cancer and polyposis susceptibility were evaluated using the ClinGen Clinical Validity framework. METHODS: Forty-two gene-disease pairs were assessed for strength of evidence supporting an association with hereditary colorectal cancer and/or polyposis. Genetic and experimental evidence supporting each gene-disease relationship was curated independently by two trained biocurators. Evidence was reviewed with experts and assigned a final clinical validity classification. RESULTS: Of all gene-disease pairs evaluated, 14/42 (33.3%) were Definitive, 1/42 (2.4%) were Strong, 6/42 (14.3%) were Moderate, 18/42 (42.9%) were Limited, and 3/42 (7.1%) were either No Reported Evidence, Disputed, or Refuted. Of panels in the National Institutes of Health Genetic Testing Registry, 4/26 (~15.4%) contain genes with Limited clinical evidence. CONCLUSION: Clinicians and laboratory diagnosticians should note that <60% of the genes on clinically available panels have Strong or Definitive evidence of association with hereditary colon cancer or polyposis, and >40% have only Moderate, Limited, Disputed, or Refuted evidence. Continuing to expand the structured assessment of the clinical relevance of genes listed on hereditary cancer testing panels will help clinicians and diagnostic laboratories focus the communication of genetic testing results on clinically significant genes.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , Neoplasias Colorrectales/genética , Estudios de Asociación Genética , Pruebas Genéticas , Predisposición Genética a la Enfermedad , Humanos , Modelos Genéticos , Medición de Riesgo
7.
Genet Med ; 21(7): 1497-1506, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30504931

RESUMEN

PURPOSE: Several genes on hereditary breast and ovarian cancer susceptibility test panels have not been systematically examined for strength of association with disease. We employed the Clinical Genome Resource (ClinGen) clinical validity framework to assess the strength of evidence between selected genes and breast or ovarian cancer. METHODS: Thirty-one genes offered on cancer panel testing were selected for evaluation. The strength of gene-disease relationship was systematically evaluated and a clinical validity classification of either Definitive, Strong, Moderate, Limited, Refuted, Disputed, or No Reported Evidence was assigned. RESULTS: Definitive clinical validity classifications were made for 10/31 and 10/32 gene-disease pairs for breast and ovarian cancer respectively. Two genes had a Moderate classification whereas, 6/31 and 6/32 genes had Limited classifications for breast and ovarian cancer respectively. Contradictory evidence resulted in Disputed or Refuted assertions for 9/31 genes for breast and 4/32 genes for ovarian cancer. No Reported Evidence of disease association was asserted for 5/31 genes for breast and 11/32 for ovarian cancer. CONCLUSION: Evaluation of gene-disease association using the ClinGen clinical validity framework revealed a wide range of classifications. This information should aid laboratories in tailoring appropriate gene panels and assist health-care providers in interpreting results from panel testing.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias Ováricas/genética , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos
8.
Hum Mutat ; 39(11): 1542-1552, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30311369

RESUMEN

In its landmark paper about Standards and Guidelines for the Interpretation of Sequence Variants, the American College of Medical Genetics and Genomics (ACMG), and Association for Molecular Pathology (AMP) did not address how to use tumor data when assessing the pathogenicity of germline variants. The Clinical Genome Resource (ClinGen) established a multidisciplinary working group, the Germline/Somatic Variant Subcommittee (GSVS) with this focus. The GSVS implemented a survey to determine current practices of integrating somatic data when classifying germline variants in cancer predisposition genes. The GSVS then reviewed and analyzed available resources of relevant somatic data, and performed integrative germline variant curation exercises. The committee determined that somatic hotspots could be systematically integrated into moderate evidence of pathogenicity (PM1). Tumor RNA sequencing data showing altered splicing may be considered as strong evidence in support of germline pathogenicity (PVS1) and tumor phenotypic features such as mutational signatures be considered supporting evidence of pathogenicity (PP4). However, at present, somatic data such as focal loss of heterozygosity and mutations occurring on the alternative allele are not recommended to be systematically integrated, instead, incorporation of this type of data should take place under the advisement of multidisciplinary cancer center tumor-normal sequencing boards.


Asunto(s)
Variación Genética/genética , Genoma Humano/genética , Mutación/genética , Alelos , Biología Computacional , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/métodos , Genómica , Mutación de Línea Germinal/genética , Humanos
9.
Hum Mutat ; 39(11): 1713-1720, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30311373

RESUMEN

The Clinical Genome Resource (ClinGen) Ancestry and Diversity Working Group highlights the need to develop guidance on race, ethnicity, and ancestry (REA) data collection and use in clinical genomics. We present quantitative and qualitative evidence to characterize: (1) acquisition of REA data via clinical laboratory requisition forms, and (2) information disparity across populations in the Genome Aggregation Database (gnomAD) at clinically relevant sites ascertained from annotations in ClinVar. Our requisition form analysis showed substantial heterogeneity in clinical laboratory ascertainment of REA, as well as marked incongruity among terms used to define REA categories. There was also striking disparity across REA populations in the amount of information available about clinically relevant variants in gnomAD. European ancestral populations constituted the majority of observations (55.8%), allele counts (59.7%), and private alleles (56.1%) in gnomAD at 550 loci with "pathogenic" and "likely pathogenic" expert-reviewed variants in ClinVar. Our findings highlight the importance of implementing and supporting programs to increase diversity in genome sequencing and clinical genomics, as well as measuring uncertainty around population-level datasets that are used in variant interpretation. Finally, we suggest the need for a standardized REA data collection framework to be developed through partnerships and collaborations and adopted across clinical genomics.


Asunto(s)
Variación Genética/genética , Alelos , Etnicidad , Pruebas Genéticas/métodos , Genómica/métodos , Humanos , Mutación , Prohibitinas
10.
Hum Mutat ; 39(11): 1721-1732, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30311370

RESUMEN

Harmonization of cancer variant representation, efficient communication, and free distribution of clinical variant-associated knowledge are central problems that arise with increased usage of clinical next-generation sequencing. The Clinical Genome Resource (ClinGen) Somatic Working Group (WG) developed a minimal variant level data (MVLD) representation of cancer variants, and has an ongoing collaboration with Clinical Interpretations of Variants in Cancer (CIViC), an open-source platform supporting crowdsourced and expert-moderated cancer variant curation. Harmonization between MVLD and CIViC variant formats was assessed by formal field-by-field analysis. Adjustments to the CIViC format were made to harmonize with MVLD and support ClinGen Somatic WG curation activities, including four new features in CIViC: (1) introduction of an assertions feature for clinical variant assessment following the Association of Molecular Pathologists (AMP) guidelines, (2) group-level curation tracking for organizations, enabling member transparency, and curation effort summaries, (3) introduction of ClinGen Allele Registry IDs to CIViC, and (4) mapping of CIViC assertions into ClinVar submission with automated submissions. A generalizable workflow utilizing MVLD and new CIViC features is outlined for use by ClinGen Somatic WG task teams for curation and submission to ClinVar, and provides a model for promoting harmonization of cancer variant representation and efficient distribution of this information.


Asunto(s)
Genoma Humano/genética , Neoplasias/genética , Bases de Datos Genéticas , Pruebas Genéticas , Variación Genética/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Programas Informáticos
13.
Pharmacogenet Genomics ; 26(6): 271-9, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26906009

RESUMEN

BACKGROUND: Mutations or alterations in expression of the 5' nucleotidase gene family can lead to altered responses to treatment with nucleoside analogs. While investigating leukemia susceptibility genes, we discovered a very rare p.L254P NT5C1A missense variant in the substrate recognition motif. Given the paucity of cellular drug response data from the NT5C1A germline variation, we characterized p.L254P and eight rare variants of NT5C1A from genomic databases. MATERIALS AND METHODS: Through lentiviral infection, we created HEK293 cell lines that stably overexpress wild-type NT5C1A, p.L254P, or eight NT5C1A variants reported in the National Heart Lung and Blood Institute Exome Variant Server (one truncating and seven missense). IC50 values were determined by cytotoxicity assays after exposure to chemotherapeutic nucleoside analogs (cladribine, gemcitabine, 5-fluorouracil). In addition, we used structure-based homology modeling to generate a three-dimensional model for the C-terminal region of NT5C1A. RESULTS: The p.R180X (truncating), p.A214T, and p.L254P missense changes were the only variants that significantly impaired protein function across all nucleotide analogs tested (>5-fold difference vs. wild-type; P<0.05). Several of the remaining variants individually showed differential effects (both more and less resistant) across the analogs tested. The homology model provided a structural framework to understand the impact of NT5C1A mutants on catalysis and drug processing. The model predicted active site residues within NT5C1A motif III and we experimentally confirmed that p.K314 (not p.K320) is required for NT5C1A activity. CONCLUSION: We characterized germline variation and predicted protein structures of NT5C1A. Individual missense changes showed considerable variation in response to the different nucleoside analogs tested, which may impact patients' responses to treatment.


Asunto(s)
5'-Nucleotidasa/genética , Antineoplásicos/uso terapéutico , Mutación de Línea Germinal/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Farmacogenética , 5'-Nucleotidasa/química , Supervivencia Celular/efectos de los fármacos , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica/efectos de los fármacos
15.
BMC Genomics ; 16: 286, 2015 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-25886820

RESUMEN

BACKGROUND: Characterizing large genomic variants is essential to expanding the research and clinical applications of genome sequencing. While multiple data types and methods are available to detect these structural variants (SVs), they remain less characterized than smaller variants because of SV diversity, complexity, and size. These challenges are exacerbated by the experimental and computational demands of SV analysis. Here, we characterize the SV content of a personal genome with Parliament, a publicly available consensus SV-calling infrastructure that merges multiple data types and SV detection methods. RESULTS: We demonstrate Parliament's efficacy via integrated analyses of data from whole-genome array comparative genomic hybridization, short-read next-generation sequencing, long-read (Pacific BioSciences RSII), long-insert (Illumina Nextera), and whole-genome architecture (BioNano Irys) data from the personal genome of a single subject (HS1011). From this genome, Parliament identified 31,007 genomic loci between 100 bp and 1 Mbp that are inconsistent with the hg19 reference assembly. Of these loci, 9,777 are supported as putative SVs by hybrid local assembly, long-read PacBio data, or multi-source heuristics. These SVs span 59 Mbp of the reference genome (1.8%) and include 3,801 events identified only with long-read data. The HS1011 data and complete Parliament infrastructure, including a BAM-to-SV workflow, are available on the cloud-based service DNAnexus. CONCLUSIONS: HS1011 SV analysis reveals the limits and advantages of multiple sequencing technologies, specifically the impact of long-read SV discovery. With the full Parliament infrastructure, the HS1011 data constitute a public resource for novel SV discovery, software calibration, and personal genome structural variation analysis.


Asunto(s)
Genoma Humano , Variación Estructural del Genoma , Análisis de Secuencia de ADN/métodos , Biología Computacional , Bases de Datos Genéticas , Diploidia , Humanos , Programas Informáticos
17.
Genet Med ; 17(10): 831-5, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25569436

RESUMEN

PURPOSE: We applied whole-genome sequencing (WGS) to children diagnosed with neoplasms and found to carry apparently balanced constitutional translocations to discover novel genic disruptions. METHODS: We applied the structural variation (SV) calling programs CREST, BreakDancer, SV-STAT, and CGAP-CNV, and we developed an annotative filtering strategy to achieve nucleotide resolution at the translocations. RESULTS: We identified the breakpoints for t(6;12)(p21.1;q24.31), disrupting HNF1A in a patient diagnosed with hepatic adenomas and maturity-onset diabetes of the young (MODY). Translocation as the disruptive event of HNF1A, a gene known to be involved in MODY3, has not been previously reported. In a subject with Hodgkin lymphoma and subsequent low-grade glioma, we identified t(5;18)(q35.1;q21.2), disrupting both SLIT3 and DCC, genes previously implicated in both glioma and lymphoma. CONCLUSION: These examples suggest that implementing clinical WGS in the diagnostic workup of patients with novel but apparently balanced translocations may reveal unanticipated disruption of disease-associated genes and aid in prediction of the clinical phenotype.


Asunto(s)
Estudios de Asociación Genética , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias/genética , Translocación Genética , Adenoma/diagnóstico , Adenoma/genética , Adulto , Factores de Edad , Secuencia de Bases , Niño , Preescolar , Puntos de Rotura del Cromosoma , Cromosomas Humanos Par 12 , Cromosomas Humanos Par 18 , Cromosomas Humanos Par 5 , Cromosomas Humanos Par 6 , Receptor DCC , Variaciones en el Número de Copia de ADN , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Femenino , Genómica , Humanos , Mutación INDEL , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Masculino , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Neoplasias/diagnóstico , Polimorfismo de Nucleótido Simple , Receptores de Superficie Celular/genética , Proteínas Supresoras de Tumor/genética
18.
Database (Oxford) ; 20232023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36617168

RESUMEN

Von Hippel-Lindau (VHL) disease is a rare, autosomal dominant disorder that predisposes individuals to developing tumors in many organs. There is significant phenotypic variability and genetic variants encountered within this syndrome, posing a considerable challenge to patient care. The lack of VHL variant data sharing paired with the absence of aggregated genotype-phenotype information results in an arduous process, when characterizing genetic variants and predicting patient prognosis. To address these gaps in knowledge, the Clinical Genome Resource (ClinGen) VHL Variant Curation Expert Panel (VCEP) has been resolving a list of variants of uncertain significance within the VHL gene. Through community curation, we crowdsourced the laborious task of variant annotation by modifying the ClinGen Community Curation (C3)-developed Baseline Annotation protocol and annotating all published VHL cases with the reported genotype-phenotype information in Hypothes.is, an open-access web annotation tool. This process, incorporated into the ClinGen VCEP's workflow, will aid in their curation efforts. To facilitate the curation at all levels of genetics expertise, our team developed a 4-day biocuration training protocol and resource guide. To date, 91.3% of annotations have been completed by undergraduate and high-school students without formal academic genetics specialization. Here, we present our VHL-specific annotation protocol utilizing Hypothes.is, which offers a standardized method to present case-resolution data, and our biocuration training protocol, which can be adapted for other rare disease platforms. By facilitating training for community curation of VHL disease, we increased student engagement with clinical genetics while enhancing knowledge translation in the field of hereditary cancer. Database URL: https://hypothes.is/groups/dKymJJpZ/vhl-hypothesis-annotation.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
19.
Cancer Genet ; 264-265: 50-59, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35366592

RESUMEN

Gene fusions involving the neurotrophic receptor tyrosine kinase genes NTRK1, NTRK2, and NTRK3, are well established oncogenic drivers in a broad range of pediatric and adult tumors. These fusions are also important actionable markers, predicting often dramatic response to FDA approved kinase inhibitors. Accurate interpretation of the clinical significance of NTRK fusions is a high priority for diagnostic laboratories, but remains challenging and time consuming given the rapid pace of new data accumulation, the diversity of fusion partners and tumor types, and heterogeneous and incomplete information in variant databases and knowledgebases. The ClinGen NTRK Fusions Somatic Cancer Variant Curation Expert Panel (SC-VCEP) was formed to systematically address these challenges and create an expert-curated resource to support clinicians, researchers, patients and their families in making accurate interpretations and informed treatment decisions for NTRK fusion-driven tumors. We describe a system for NTRK fusion interpretation (including compilation of key elements and annotations) developed by the NTRK fusions SC-VCEP. We illustrate this stepwise process on examples of LMNA::NTRK1 and KANK1::NTRK2 fusions. Finally, we provide detailed analysis of current representation of NTRK fusions in public fusion databases and the CIViC knowledgebase, performed by the NTRK fusions SC-VCEP to determine existing gaps and prioritize future curation activities.


Asunto(s)
Neoplasias , Receptor trkA , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/uso terapéutico , Adulto , Biomarcadores de Tumor/genética , Carcinogénesis , Niño , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/uso terapéutico , Fusión Génica , Humanos , Neoplasias/diagnóstico , Proteínas de Fusión Oncogénica/genética , Receptor trkA/genética , Receptor trkA/uso terapéutico
20.
Genome Med ; 14(1): 6, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35039090

RESUMEN

BACKGROUND: Identification of clinically significant genetic alterations involved in human disease has been dramatically accelerated by developments in next-generation sequencing technologies. However, the infrastructure and accessible comprehensive curation tools necessary for analyzing an individual patient genome and interpreting genetic variants to inform healthcare management have been lacking. RESULTS: Here we present the ClinGen Variant Curation Interface (VCI), a global open-source variant classification platform for supporting the application of evidence criteria and classification of variants based on the ACMG/AMP variant classification guidelines. The VCI is among a suite of tools developed by the NIH-funded Clinical Genome Resource (ClinGen) Consortium and supports an FDA-recognized human variant curation process. Essential to this is the ability to enable collaboration and peer review across ClinGen Expert Panels supporting users in comprehensively identifying, annotating, and sharing relevant evidence while making variant pathogenicity assertions. To facilitate evidence-based improvements in human variant classification, the VCI is publicly available to the genomics community. Navigation workflows support users providing guidance to comprehensively apply the ACMG/AMP evidence criteria and document provenance for asserting variant classifications. CONCLUSIONS: The VCI offers a central platform for clinical variant classification that fills a gap in the learning healthcare system, facilitates widespread adoption of standards for clinical curation, and is available at https://curation.clinicalgenome.org.


Asunto(s)
Variación Genética , Genoma Humano , Humanos , Pruebas Genéticas , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA