Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Immunol ; 211(6): 981-993, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37493438

RESUMEN

Current vaccine efforts to combat SARS-CoV-2 are focused on the whole spike protein administered as mRNA, viral vector, or protein subunit. However, the SARS-CoV-2 receptor-binding domain (RBD) is the immunodominant portion of the spike protein, accounting for 90% of serum neutralizing activity. In this study, we constructed several versions of RBD and together with aluminum hydroxide or DDA (dimethyldioctadecylammonium bromide)/TDB (d-(+)-trehalose 6,6'-dibehenate) adjuvant evaluated immunogenicity in mice. We generated human angiotensin-converting enzyme 2 knock-in mice to evaluate vaccine efficacy in vivo following viral challenge. We found that 1) subdomain (SD)1 was essential for the RBD to elicit maximal immunogenicity; 2) RBDSD1 produced in mammalian HEK cells elicited better immunogenicity than did protein produced in insect or yeast cells; 3) RBDSD1 combined with the CD4 Th1 adjuvant DDA/TDB produced higher neutralizing Ab responses and stronger CD4 T cell responses than did aluminum hydroxide; 4) addition of monomeric human Fc receptor to RBDSD1 (RBDSD1Fc) significantly enhanced immunogenicity and neutralizing Ab titers; 5) the Beta version of RBDSD1Fc provided a broad range of cross-neutralization to multiple antigenic variants of concern, including Omicron; and 6) the Beta version of RBDSD1Fc with DDA/TDB provided complete protection against virus challenge in the knock-in mouse model. Thus, we have identified an optimized RBD-based subunit vaccine suitable for clinical trials.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Animales , Ratones , SARS-CoV-2 , Vacunas contra la COVID-19 , Hidróxido de Aluminio , Glicoproteína de la Espiga del Coronavirus , Vacunas de Subunidad , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Mamíferos
2.
J Struct Biol ; 216(2): 108086, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38527711

RESUMEN

Staphylococcus aureus, an ESKAPE pathogen, is a major clinical concern due to its pathogenicity and manifold antimicrobial resistance mechanisms. The commonly used ß-lactam antibiotics target bacterial penicillin-binding proteins (PBPs) and inhibit crosslinking of peptidoglycan strands that comprise the bacterial cell wall mesh, initiating a cascade of effects leading to bacterial cell death. S. aureus PBP1 is involved in synthesis of the bacterial cell wall during division and its presence is essential for survival of both antibiotic susceptible and resistant S. aureus strains. Here, we present X-ray crystallographic data for S. aureus PBP1 in its apo form as well as acyl-enzyme structures with distinct classes of ß-lactam antibiotics representing the penicillins, carbapenems, and cephalosporins, respectively: oxacillin, ertapenem and cephalexin. Our structural data suggest that the PBP1 active site is readily accessible for substrate, with little conformational change in key structural elements required for its covalent acylation of ß-lactam inhibitors. Stopped-flow kinetic analysis and gel-based competition assays support the structural observations, with even the weakest performing ß-lactams still having comparatively high acylation rates and affinities for PBP1. Our structural and kinetic analysis sheds insight into the ligand-PBP interactions that drive antibiotic efficacy against these historically useful antimicrobial targets and expands on current knowledge for future drug design and treatment of S. aureus infections.


Asunto(s)
Proteínas de Unión a las Penicilinas , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/genética , Cristalografía por Rayos X , Cinética , Antibacterianos/farmacología , Antibacterianos/química , beta-Lactamas/farmacología , beta-Lactamas/metabolismo , beta-Lactamas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Dominio Catalítico , Conformación Proteica , Modelos Moleculares
3.
Nat Chem Biol ; 18(5): 501-510, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35289327

RESUMEN

Native porphyran is a hybrid of porphryan and agarose. As a common element of edible seaweed, this algal galactan is a frequent component of the human diet. Bacterial members of the human gut microbiota have acquired polysaccharide utilization loci (PULs) that enable the metabolism of porphyran or agarose. However, the molecular mechanisms that underlie the deconstruction and use of native porphyran remains incompletely defined. Here, we have studied two human gut bacteria, porphyranolytic Bacteroides plebeius and agarolytic Bacteroides uniformis, that target native porphyran. This reveals an exo-based cycle of porphyran depolymerization that incorporates a keystone sulfatase. In both PULs this cycle also works together with a PUL-encoded agarose depolymerizing machinery to synergistically reduce native porphyran to monosaccharides. This provides a framework for understanding the deconstruction of a hybrid algal galactan, and insight into the competitive and/or syntrophic relationship of gut microbiota members that target rare nutrients.


Asunto(s)
Microbioma Gastrointestinal , Bacterias/metabolismo , Galactanos , Humanos , Polisacáridos/metabolismo , Sefarosa
4.
Nat Chem Biol ; 15(8): 803-812, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31285597

RESUMEN

Marine seaweeds increasingly grow into extensive algal blooms, which are detrimental to coastal ecosystems, tourism and aquaculture. However, algal biomass is also emerging as a sustainable raw material for the bioeconomy. The potential exploitation of algae is hindered by our limited knowledge of the microbial pathways-and hence the distinct biochemical functions of the enzymes involved-that convert algal polysaccharides into oligo- and monosaccharides. Understanding these processes would be essential, however, for applications such as the fermentation of algal biomass into bioethanol or other value-added compounds. Here, we describe the metabolic pathway that enables the marine flavobacterium Formosa agariphila to degrade ulvan, the main cell wall polysaccharide of bloom-forming Ulva species. The pathway involves 12 biochemically characterized carbohydrate-active enzymes, including two polysaccharide lyases, three sulfatases and seven glycoside hydrolases that sequentially break down ulvan into fermentable monosaccharides. This way, the enzymes turn a previously unexploited renewable into a valuable and ecologically sustainable bioresource.


Asunto(s)
Flavobacteriaceae/enzimología , Polisacáridos/metabolismo , Proteínas Bacterianas , Metabolismo de los Hidratos de Carbono , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Genoma Bacteriano , Genómica , Modelos Moleculares , Polisacáridos/química , Conformación Proteica , Sulfatasas/química , Sulfatasas/genética , Sulfatasas/metabolismo
5.
Biochem J ; 475(23): 3875-3886, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30404923

RESUMEN

Degradation of carbohydrates by bacteria represents a key step in energy metabolism that can be inhibited by methylated sugars. Removal of methyl groups, which is critical for further processing, poses a biocatalytic challenge because enzymes need to overcome a high energy barrier. Our structural and computational analysis revealed how a member of the cytochrome P450 family evolved to oxidize a carbohydrate ligand. Using structural biology, we ascertained the molecular determinants of substrate specificity and revealed a highly specialized active site complementary to the substrate chemistry. Invariance of the residues involved in substrate recognition across the subfamily suggests that they are critical for enzyme function and when mutated, the enzyme lost substrate recognition. The structure of a carbohydrate-active P450 adds mechanistic insight into monooxygenase action on a methylated monosaccharide and reveals the broad conservation of the active site machinery across the subfamily.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Flavobacteriaceae/enzimología , Azúcares/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Dominio Catalítico , Cristalografía por Rayos X , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Desmetilación , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Dominios Proteicos , Especificidad por Sustrato , Azúcares/química
6.
Environ Microbiol ; 20(11): 4127-4140, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30246424

RESUMEN

Marine microscopic algae carry out about half of the global carbon dioxide fixation into organic matter. They provide organic substrates for marine microbes such as members of the Bacteroidetes that degrade algal polysaccharides using carbohydrate-active enzymes (CAZymes). In Bacteroidetes genomes CAZyme encoding genes are mostly grouped in distinct regions termed polysaccharide utilization loci (PULs). While some studies have shown involvement of PULs in the degradation of algal polysaccharides, the specific substrates are for the most part still unknown. We investigated four marine Bacteroidetes isolated from the southern North Sea that harbour putative mannan-specific PULs. These PULs are similarly organized as PULs in human gut Bacteroides that digest α- and ß-mannans from yeasts and plants respectively. Using proteomics and defined growth experiments with polysaccharides as sole carbon sources we could show that the investigated marine Bacteroidetes express the predicted functional proteins required for α- and ß-mannan degradation. Our data suggest that algal mannans play an as yet unknown important role in the marine carbon cycle, and that biochemical principles established for gut or terrestrial microbes also apply to marine bacteria, even though their PULs are evolutionarily distant.


Asunto(s)
Bacteroidetes/metabolismo , Mananos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroidetes/enzimología , Bacteroidetes/genética , Metabolismo de los Hidratos de Carbono , Ciclo del Carbono , Humanos , Mananos/química , Mar del Norte , Proteómica
7.
J Biol Chem ; 290(52): 30888-900, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26491009

RESUMEN

An important facet of the interaction between the pathogen Streptococcus pneumoniae (pneumococcus) and its human host is the ability of this bacterium to process host glycans. To achieve cleavage of the glycosidic bonds in host glycans, S. pneumoniae deploys a wide array of glycoside hydrolases. Here, we identify and characterize a new family 20 glycoside hydrolase, GH20C, from S. pneumoniae. Recombinant GH20C possessed the ability to hydrolyze the ß-linkages joining either N-acetylglucosamine or N-acetylgalactosamine to a wide variety of aglycon residues, thus revealing this enzyme to be a generalist N-acetylhexosaminidase in vitro. X-ray crystal structures were determined for GH20C in a ligand-free form, in complex with the N-acetylglucosamine and N-acetylgalactosamine products of catalysis and in complex with both gluco- and galacto-configured inhibitors O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc), O-(2-acetamido-2-deoxy-D-galactopyranosylidene)amino N-phenyl carbamate (GalPUGNAc), N-acetyl-D-glucosamine-thiazoline (NGT), and N-acetyl-D-galactosamine-thiazoline (GalNGT) at resolutions from 1.84 to 2.7 Å. These structures showed N-acetylglucosamine and N-acetylgalactosamine to be recognized via identical sets of molecular interactions. Although the same sets of interaction were maintained with the gluco- and galacto-configured inhibitors, the inhibition constants suggested preferred recognition of the axial O4 when an aglycon moiety was present (Ki for PUGNAc > GalPUGNAc) but preferred recognition of an equatorial O4 when the aglycon was absent (Ki for GalNGT > NGT). Overall, this study reveals GH20C to be another tool that is unique in the arsenal of S. pneumoniae and that it may implement the effort of the bacterium to utilize and/or destroy the wide array of host glycans that it may encounter.


Asunto(s)
Proteínas Bacterianas/química , Genoma Bacteriano , Polisacáridos/química , Streptococcus pneumoniae/enzimología , beta-N-Acetilhexosaminidasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catálisis , Cristalografía por Rayos X , Humanos , Polisacáridos/genética , Polisacáridos/metabolismo , Estructura Terciaria de Proteína , Streptococcus pneumoniae/genética , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-23722835

RESUMEN

The type VI secretion system of Pseudomonas aeruginosa has been shown to be responsible for the translocation of bacteriolytic effectors into competing bacteria. A mechanistic understanding of this widely distributed secretion system is developing and structural studies of its components are ongoing. Two representative structures of one highly conserved component, TssJ, from Escherichia coli and Serratia marcescens have been published. Here, the X-ray crystal structure of TssJ1 from P. aeruginosa is presented at 1.4 Å resolution. The overall structure is conserved among the three proteins. This finding suggests that the homologues function in a similar manner and bolsters the understanding of the structure of this family of proteins.


Asunto(s)
Proteínas Bacterianas/química , Sistemas de Secreción Bacterianos , Lipoproteínas/química , Pseudomonas aeruginosa , Secuencia de Aminoácidos , Proteínas Bacterianas/aislamiento & purificación , Cristalografía por Rayos X , Lipoproteínas/aislamiento & purificación , Datos de Secuencia Molecular , Estructura Secundaria de Proteína
9.
ISME J ; 17(2): 276-285, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36411326

RESUMEN

The polysaccharide ß-mannan, which is common in terrestrial plants but unknown in microalgae, was recently detected during diatom blooms. We identified a ß-mannan polysaccharide utilization locus (PUL) in the genome of the marine flavobacterium Muricauda sp. MAR_2010_75. Proteomics showed ß-mannan induced translation of 22 proteins encoded within the PUL. Biochemical and structural analyses deduced the enzymatic cascade for ß-mannan utilization. A conserved GH26 ß-mannanase with endo-activity depolymerized the ß-mannan. Consistent with the biochemistry, X-ray crystallography showed the typical TIM-barrel fold of related enzymes found in terrestrial ß-mannan degraders. Structural and biochemical analyses of a second GH26 allowed the prediction of an exo-activity on shorter manno-gluco oligosaccharides. Further analysis demonstrated exo-α-1,6-galactosidase- and endo-ß-1,4-glucanase activity of the PUL-encoded GH27 and GH5_26, respectively, indicating the target substrate is a galactoglucomannan. Epitope deletion assays with mannanases as analytic tools indicate the presence of ß-mannan in the diatoms Coscinodiscus wailesii and Chaetoceros affinis. Mannanases from the PUL were active on diatom ß-mannan and polysaccharide extracts sampled during a microalgal bloom at the North Sea. Together these results demonstrate that marine microorganisms use a conserved enzymatic cascade to degrade ß-mannans of marine and terrestrial origin and that this metabolic pathway plays a role in marine carbon cycling.


Asunto(s)
Diatomeas , Mananos , Mananos/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Bacteroidetes/genética , beta-Manosidasa/genética , beta-Manosidasa/química , beta-Manosidasa/metabolismo , Polisacáridos/metabolismo , Oligosacáridos/metabolismo
10.
Microbiology (Reading) ; 157(Pt 12): 3483-3491, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21980115

RESUMEN

The Francisella pathogenicity island (FPI) encodes proteins thought to compose a type VI secretion system (T6SS) that is required for the intracellular growth of Francisella novicida. In this work we used deletion mutagenesis and genetic complementation to determine that the intracellular growth of F. novicida was dependent on 14 of the 18 genes in the FPI. The products of the iglABCD operon were localized by the biochemical fractionation of F. novicida, and Francisella tularensis LVS. Sucrose gradient separation of water-insoluble material showed that the FPI-encoded proteins IglA, IglB and IglC were found in multiple fractions, especially in a fraction that did not correspond to a known membrane fraction. We interpreted these data to suggest that IglA, IglB and IglC are part of a macromolecular structure. Analysis of published structural data suggested that IglC is an analogue of Hcp, which is thought to form long nano-tubes. Thus the fractionation properties of IglA, IglB and IglC are consistent with the current model of the T6SS apparatus, which supposes that IglA and IglB homologues form an outer tube structure that surrounds an inner tube composed of Hcp (IglC) subunits. Fractionation of F. novicida expressing FLAG-tagged DotU (IcmH homologue) and PdpB (IcmF homologue) showed that these proteins localize to the inner membrane. Deletion of dotU led to the cleavage of PdpB, suggesting an interaction of these two proteins that is consistent with results obtained with other T6SSs. Our results may provide a mechanistic basis for many of the studies that have examined the virulence properties of Francisella mutants in FPI genes, namely that the observed phenotypes of the mutants are the result of the disruption of the FPI-encoded T6SS structure.


Asunto(s)
Francisella/genética , Francisella/metabolismo , Islas Genómicas , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Membrana Celular/química , Francisella/crecimiento & desarrollo , Eliminación de Gen , Prueba de Complementación Genética , Proteínas de Transporte de Membrana/aislamiento & purificación , Modelos Moleculares , Multimerización de Proteína , Factores de Virulencia/aislamiento & purificación
11.
Structure ; 29(2): 125-138.e5, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32877645

RESUMEN

The type III secretion system (T3SS) is a multi-membrane-spanning protein channel used by Gram-negative pathogenic bacteria to secrete effectors directly into the host cell cytoplasm. In the many species reliant on the T3SS for pathogenicity, proper assembly of the outer membrane secretin pore depends on a diverse family of lipoproteins called pilotins. We present structural and biochemical data on the Salmonella enterica pilotin InvH and the S domain of its cognate secretin InvG. Characterization of InvH by X-ray crystallography revealed a dimerized, α-helical pilotin. Size-exclusion-coupled multi-angle light scattering and small-angle X-ray scattering provide supporting evidence for the formation of an InvH homodimer in solution. Structures of the InvH-InvG heterodimeric complex determined by X-ray crystallography and NMR spectroscopy indicate a predominantly hydrophobic interface. Knowledge of the interaction between InvH and InvG brings us closer to understanding the mechanisms by which pilotins assemble the secretin pore.


Asunto(s)
Proteínas Bacterianas/química , Secretina/química , Sistemas de Secreción Tipo III/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Unión Proteica , Salmonella enterica , Dispersión del Ángulo Pequeño , Secretina/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Difracción de Rayos X
12.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 12): 1596-8, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21139203

RESUMEN

Tularaemia is an uncommon but potentially dangerous zoonotic disease caused by the bacterium Francisella tularensis. As few as ten bacterial cells are sufficient to cause disease in a healthy human, making this one of the most infectious disease agents known. The virulence of this organism is dependent upon a genetic locus known as the Francisella pathogenicity island (FPI), which encodes components of a secretion system that is related to the type VI secretion system. Here, the cloning, expression, purification and preliminary X-ray diffraction statistics of the FPI-encoded protein IglE are presented. This putative lipoprotein is required for intra-macrophage growth and is thought to be a constituent of the periplasmic portion of the type VI-like protein complex that is responsible for the secretion of critical virulence factors in Francisella.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Francisella tularensis/química , Francisella tularensis/crecimiento & desarrollo , Espacio Intracelular/microbiología , Difracción de Rayos X , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Humanos
13.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 9): 422-427, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32880590

RESUMEN

The recently identified marine bacterium Pseudoalteromonas fuliginea sp. PS47 possesses a polysaccharide-utilization locus dedicated to agarose degradation. In particular, it contains a gene (locus tag EU509_06755) encoding a ß-agarase that belongs to glycoside hydrolase family 50 (GH50), PfGH50B. The 2.0 Šresolution X-ray crystal structure of PfGH50B reveals a rare complex multidomain fold that was found in two of the three previously determined GH50 structures. The structure comprises an N-terminal domain with a carbohydrate-binding module (CBM)-like fold fused to a C-terminal domain by a rigid linker. The CBM-like domain appears to function by extending the catalytic groove of the enzyme. Furthermore, the PfGH50B structure highlights key structural features in the mobile loops that may function to restrict the degree of polymerization of the neoagaro-oligosaccharide products and the enzyme processivity.


Asunto(s)
Proteínas Bacterianas/química , Glicósido Hidrolasas/química , Pseudoalteromonas/química , Sefarosa/química , Secuencia de Aminoácidos , Organismos Acuáticos/química , Organismos Acuáticos/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Pseudoalteromonas/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sefarosa/metabolismo
14.
Structure ; 28(6): 643-650.e5, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32320673

RESUMEN

Peptidoglycan (PG) is an essential component of the bacterial cell wall and is assembled from a lipid II precursor by glycosyltransferase and transpeptidase reactions catalyzed in particular by bifunctional class A penicillin-binding proteins (aPBPs). In the major clinical pathogen Pseudomonas aeruginosa, PBP1B is anchored within the cytoplasmic membrane but regulated by a bespoke outer membrane-localized lipoprotein known as LpoP. Here, we report the structure of LpoP, showing an extended N-terminal, flexible tether followed by a well-ordered C-terminal tandem-tetratricopeptide repeat domain. We show that LpoP stimulates both PBP1B transpeptidase and glycosyltransferase activities in vitro and interacts directly via its C terminus globular domain with the central UB2H domain of PBP1B. Contrary to the situation in E. coli, P. aeruginosa CpoB does not regulate PBP1B/LpoP in vitro. We propose a mechanism that helps to underscore similarities and differences in class A PBP activation across Gram-negative bacteria.


Asunto(s)
Lipoproteínas/química , Lipoproteínas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Pseudomonas aeruginosa/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Membrana Celular/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Desplegamiento Proteico
15.
Structure ; 26(5): 747-758.e4, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29681469

RESUMEN

Sulfatases play a biologically important role by cleaving sulfate groups from molecules. They can be identified on the basis of signature sequences within their primary structures, and the largest family, S1, has predictable features that contribute specifically to the recognition and catalytic removal of sulfate groups. However, despite advances in the prediction and understanding of S1 sulfatases, a major question regards the molecular determinants that drive substrate recognition beyond the targeted sulfate group. Here, through analysis of an endo-4S-ι-carrageenan sulfatase (PsS1_19A) from Pseudoalteromonas sp. PS47, particularly X-ray crystal structures in complex with intact substrates, we show that specific recognition of the substrate leaving group components, in this case carbohydrate, provides the enzyme with specificity for its substrate. On the basis of these results we propose a catalytic subsite nomenclature that we anticipate will form a general foundation for understanding and describing the molecular basis of substrate recognition by sulfatases.


Asunto(s)
Carragenina/metabolismo , Pseudoalteromonas/enzimología , Sulfatasas/química , Sulfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Especificidad por Sustrato
16.
ISME J ; 12(12): 2894-2906, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30061707

RESUMEN

Polysaccharide degradation by heterotrophic microbes is a key process within Earth's carbon cycle. Here, we use environmental proteomics and metagenomics in combination with cultivation experiments and biochemical characterizations to investigate the molecular details of in situ polysaccharide degradation mechanisms during microalgal blooms. For this, we use laminarin as a model polysaccharide. Laminarin is a ubiquitous marine storage polymer of marine microalgae and is particularly abundant during phytoplankton blooms. In this study, we show that highly specialized bacterial strains of the Bacteroidetes phylum repeatedly reached high abundances during North Sea algal blooms and dominated laminarin turnover. These genomically streamlined bacteria of the genus Formosa have an expanded set of laminarin hydrolases and transporters that belonged to the most abundant proteins in the environmental samples. In vitro experiments with cultured isolates allowed us to determine the functions of in situ expressed key enzymes and to confirm their role in laminarin utilization. It is shown that laminarin consumption of Formosa spp. is paralleled by enhanced uptake of diatom-derived peptides. This study reveals that genome reduction, enzyme fusions, transporters, and enzyme expansion as well as a tight coupling of carbon and nitrogen metabolism provide the tools, which make Formosa spp. so competitive during microalgal blooms.


Asunto(s)
Bacteroidetes/fisiología , Eutrofización , Flavobacteriaceae/fisiología , Glucanos/metabolismo , Microalgas/microbiología , Polisacáridos/metabolismo , Adaptación Fisiológica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroidetes/genética , Ciclo del Carbono , Flavobacteriaceae/genética , Hidrolasas/genética , Hidrolasas/metabolismo , Metagenómica , Microalgas/metabolismo , Mar del Norte , Fitoplancton/metabolismo , Fitoplancton/microbiología
17.
Protein Sci ; 26(12): 2445-2450, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28884852

RESUMEN

Algal polysaccharides of diverse structures are one of the most abundant carbon resources for heterotrophic, marine bacteria with coevolved digestive enzymes. A putative sulfo-mannan polysaccharide utilization locus, which is conserved in marine flavobacteria, contains an unusual GH99-like protein that lacks the conserved catalytic residues of glycoside hydrolase family 99. Using X-ray crystallography, we structurally characterized this protein from the marine flavobacterium Ochrovirga pacifica to help elucidate its molecular function. The structure reveals the absence of potential catalytic residues for polysaccharide hydrolysis, which-together with additional structural features-suggests this protein may be noncatalytic and involved in carbohydrate binding.


Asunto(s)
Organismos Acuáticos/enzimología , Flavobacteriaceae/enzimología , Glicósido Hidrolasas , Organismos Acuáticos/genética , Cristalografía por Rayos X , Escherichia coli/genética , Flavobacteriaceae/genética , Glicósido Hidrolasas/química , Glicósido Hidrolasas/clasificación , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Modelos Moleculares , Filogenia , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Structure ; 24(2): 277-84, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26749446

RESUMEN

Tse2 is a cytoactive toxin secreted by a type six secretion apparatus of Pseudomonas aeruginosa. The Tse2 toxin naturally attacks a target in the cytoplasm of bacterial cells, and can cause toxicity if artificially introduced into eukaryotic cells. The X-ray crystal structure of the complex of Tse2 and its cognate immunity protein Tsi2 revealed a heterotetrameric structure with an extensive binding interface. Structural identity was found between Tse2 and NAD-dependent enzymes, especially ADP-ribosylating toxins, which facilitated the identification of the Tse2 active site and revealed it to be occluded upon binding the inhibitor Tsi2. The structural identity shared with NAD-dependent enzymes, including conserved catalytic residues, suggests that the mechanism of Tse2 toxicity may be NAD dependent.


Asunto(s)
Antitoxinas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Pseudomonas aeruginosa/metabolismo , ADP Ribosa Transferasas/química , Secuencia de Aminoácidos , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Pseudomonas aeruginosa/química
19.
J Mol Biol ; 419(5): 277-83, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22504227

RESUMEN

Type six secretion systems (T6SSs) are found in many Gram-negative bacteria and are important for their virulence or their ecological competitiveness. The multicomponent T6SSs are responsible for the translocation of effector molecules into target eukaryotic or prokaryotic cells. The Francisella pathogenicity island encodes a putative T6SS that Francisella novicida requires for intramacrophage growth and virulence during infection of rodents. Here, we present the X-ray crystal structure of the conserved type six secretion component TssL (DotU) from F. novicida. The structure of this protein, which is referred to as Ftn_TssL, revealed an all-α-helical fold that is a unique fusion of two 3-helix bundles. The sequence of Ftn_TssL shows low identity to presumed homologs that are found in most T6SSs. The structure of Ftn_TssL, however, has allowed us to provide bioinformatics evidence that the F. novicida TssL has a fold that is very likely representative for TssL forms from both T6SSs and from the distantly related B subclass of type four secretion systems. A map of sequence conservation on the TssL structure revealed a surface-exposed groove that may represent a functional site on the protein.


Asunto(s)
Proteínas Bacterianas/química , Sistemas de Secreción Bacterianos , Francisella/metabolismo , Proteínas de la Membrana/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Secuencia Conservada , Cristalografía por Rayos X , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA