RESUMEN
The choroid plexus (ChP) is the blood-cerebrospinal fluid (CSF) barrier and the primary source of CSF. Acquired hydrocephalus, caused by brain infection or hemorrhage, lacks drug treatments due to obscure pathobiology. Our integrated, multi-omic investigation of post-infectious hydrocephalus (PIH) and post-hemorrhagic hydrocephalus (PHH) models revealed that lipopolysaccharide and blood breakdown products trigger highly similar TLR4-dependent immune responses at the ChP-CSF interface. The resulting CSF "cytokine storm", elicited from peripherally derived and border-associated ChP macrophages, causes increased CSF production from ChP epithelial cells via phospho-activation of the TNF-receptor-associated kinase SPAK, which serves as a regulatory scaffold of a multi-ion transporter protein complex. Genetic or pharmacological immunomodulation prevents PIH and PHH by antagonizing SPAK-dependent CSF hypersecretion. These results reveal the ChP as a dynamic, cellularly heterogeneous tissue with highly regulated immune-secretory capacity, expand our understanding of ChP immune-epithelial cell cross talk, and reframe PIH and PHH as related neuroimmune disorders vulnerable to small molecule pharmacotherapy.
Asunto(s)
Plexo Coroideo , Hidrocefalia , Humanos , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Plexo Coroideo/metabolismo , Hidrocefalia/líquido cefalorraquídeo , Hidrocefalia/inmunología , Inmunidad Innata , Síndrome de Liberación de Citoquinas/patologíaRESUMEN
Formation of the apical hook in etiolated dicot seedlings results from differential growth in the hypocotyl apex and is tightly controlled by environmental cues and hormones, among which auxin and gibberellins (GAs) play an important role. Cell expansion is tightly regulated by the cell wall, but whether and how feedback from this structure contributes to hook development are still unclear. Here, we show that etiolated seedlings of the Arabidopsis (Arabidopsis thaliana) quasimodo2-1 (qua2) mutant, defective in pectin biosynthesis, display severe defects in apical hook formation and maintenance, accompanied by loss of asymmetric auxin maxima and differential cell expansion. Moreover, qua2 seedlings show reduced expression of HOOKLESS1 (HLS1) and PHYTOCHROME INTERACTING FACTOR4 (PIF4), which are positive regulators of hook formation. Treatment of wild-type seedlings with the cellulose inhibitor isoxaben (isx) also prevents hook development and represses HLS1 and PIF4 expression. Exogenous GAs, loss of DELLA proteins, or HLS1 overexpression partially restore hook development in qua2 and isx-treated seedlings. Interestingly, increased agar concentration in the medium restores, both in qua2 and isx-treated seedlings, hook formation, asymmetric auxin maxima, and PIF4 and HLS1 expression. Analyses of plants expressing a Förster resonance energy transfer-based GA sensor indicate that isx reduces accumulation of GAs in the apical hook region in a turgor-dependent manner. Lack of the cell wall integrity sensor THESEUS 1, which modulates turgor loss point, restores hook formation in qua2 and isx-treated seedlings. We propose that turgor-dependent signals link changes in cell wall integrity to the PIF4-HLS1 signaling module to control differential cell elongation during hook formation.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Pared Celular , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Plantones , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Giberelinas/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/metabolismo , Mutación/genética , Pectinas/metabolismo , BenzamidasRESUMEN
As the outermost layer of plants, the epidermis serves as a critical interface between plants and the environment. During leaf development, the differentiation of specialized epidermal cell types, including stomatal guard cells, pavement cells, and trichomes, occurs simultaneously, each providing unique and pivotal functions for plant growth and survival. Decades of molecular-genetic and physiological studies have unraveled key players and hormone signaling specifying epidermal differentiation. However, most studies focus on only one cell type at a time, and how these distinct cell types coordinate as a unit is far from well-comprehended. Here we provide a review on the current knowledge of regulatory mechanisms underpinning the fate specification, differentiation, morphogenesis, and positioning of these specialized cell types. Emphasis is given to their shared developmental origins, fate flexibility, as well as cell cycle and hormonal controls. Furthermore, we discuss computational modeling approaches to integrate how mechanical properties of individual epidermal cell types and entire tissue/organ properties mutually influence each other. We hope to illuminate the underlying mechanisms coordinating the cell differentiation that ultimately generate a functional leaf epidermis.
Asunto(s)
Diferenciación Celular , Desarrollo de la Planta , Epidermis de la Planta/fisiología , Hojas de la Planta/fisiologíaRESUMEN
Spatial distribution of the plant hormone auxin regulates multiple aspects of plant development. These self-regulating auxin gradients are established by the action of PIN auxin transporters, whose activity is regulated by their constitutive cycling between the plasma membrane and endosomes. Here, we show that auxin signaling by the auxin receptor AUXIN-BINDING PROTEIN 1 (ABP1) inhibits the clathrin-mediated internalization of PIN proteins. ABP1 acts as a positive factor in clathrin recruitment to the plasma membrane, thereby promoting endocytosis. Auxin binding to ABP1 interferes with this action and leads to the inhibition of clathrin-mediated endocytosis. Our study demonstrates that ABP1 mediates a nontranscriptional auxin signaling that regulates the evolutionarily conserved process of clathrin-mediated endocytosis and suggests that this signaling may be essential for the developmentally important feedback of auxin on its own transport.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Clatrina/metabolismo , Endocitosis , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Membrana Celular/metabolismo , Proteínas de Transporte de Membrana/metabolismoRESUMEN
Pediatric hydrocephalus, the leading reason for brain surgery in children, is characterized by enlargement of the cerebral ventricles classically attributed to cerebrospinal fluid (CSF) overaccumulation. Neurosurgical shunting to reduce CSF volume is the default treatment that intends to reinstate normal CSF homeostasis, yet neurodevelopmental disability often persists in hydrocephalic children despite optimal surgical management. Here, we discuss recent human genetic and animal model studies that are shifting the view of pediatric hydrocephalus from an impaired fluid plumbing model to a new paradigm of dysregulated neural stem cell (NSC) fate. NSCs are neuroprogenitor cells that comprise the germinal neuroepithelium lining the prenatal brain ventricles. We propose that heterogenous defects in the development of these cells converge to disrupt cerebrocortical morphogenesis, leading to abnormal brain-CSF biomechanical interactions that facilitate passive pooling of CSF and secondary ventricular distention. A significant subset of pediatric hydrocephalus may thus in fact be due to a developmental brain malformation leading to secondary enlargement of the ventricles rather than a primary defect of CSF circulation. If hydrocephalus is indeed a neuroradiographic presentation of an inborn brain defect, it suggests the need to focus on optimizing neurodevelopment, rather than CSF diversion, as the primary treatment strategy for these children.
Asunto(s)
Hidrocefalia , Células-Madre Neurales , Animales , Niño , Humanos , Hidrocefalia/cirugía , Encéfalo , Ventrículos Cerebrales , Procedimientos NeuroquirúrgicosRESUMEN
Emergence of secondary roots through parental tissue is a highly controlled developmental process. Although the model plant Arabidopsis has been useful to uncover the predominant role of auxin in this process, its simple root structure is not representative of how emergence takes place in most plants, which display more complex root anatomy. White lupin is a legume crop producing structures called cluster roots, where closely spaced rootlets emerge synchronously. Rootlet primordia push their way through several cortical cell layers while maintaining the parent root integrity, reflecting more generally the lateral root emergence process in most multilayered species. In this study, we showed that lupin rootlet emergence is associated with an upregulation of cell wall pectin modifying and degrading genes under the active control of auxin. Among them, we identified LaPG3, a polygalacturonase gene typically expressed in cells surrounding the rootlet primordium and we showed that its downregulation delays emergence. Immunolabeling of pectin epitopes and their quantification uncovered a gradual pectin demethylesterification in the emergence zone, which was further enhanced by auxin treatment, revealing a direct hormonal control of cell wall properties. We also report rhamnogalacturonan-I modifications affecting cortical cells that undergo separation as a consequence of primordium outgrowth. In conclusion, we describe a model of how external tissues in front of rootlet primordia display cell wall modifications to allow for the passage of newly formed rootlets.
Asunto(s)
Arabidopsis , Lupinus , Ácidos Indolacéticos , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Lupinus/genética , Arabidopsis/genética , Pectinas , PlantasRESUMEN
Auxin is a versatile plant growth regulator that triggers multiple signalling pathways at different spatial and temporal resolutions. A plant cell is surrounded by the cell wall, a complex and dynamic network of polysaccharides. The cell wall needs to be rigid to provide mechanical support and protection and highly flexible to allow cell growth and shape acquisition. The modification of the pectin components, among other processes, is a mechanism by which auxin activity alters the mechanical properties of the cell wall. Auxin signalling precisely controls the transcriptional output of several genes encoding pectin remodelling enzymes, their local activity, pectin deposition, and modulation in different developmental contexts. This review examines the mechanism of auxin activity in regulating pectin chemistry at organ, cellular, and subcellular levels across diverse plant species. Moreover, we ask questions that remain to be addressed to fully understand the interplay between auxin and pectin in plant growth and development.
Asunto(s)
Ácidos Indolacéticos , Proteínas de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Pared Celular/metabolismo , Pectinas/metabolismoRESUMEN
INTRODUCTION: Surgical resection has long been the treatment of choice for meningiomas and is considered curative in many cases. Indeed, the extent of resection (EOR) remains a significant factor in determining disease recurrence and outcome optimization for patients undergoing surgery. Although the Simpson Grading Scale continues to be widely accepted as the measure of EOR and is used to predict symptomatic recurrence, its utility is under increasing scrutiny. The influence of surgery in the definitive management of meningioma is being re-appraised considering the rapid evolution of our understanding of the biology of meningioma. DISCUSSION: Although historically considered "benign" lesions, meningioma natural history can vary greatly, behaving with unexpectedly high recurrence rates and growth which do not always behave in accordance with their WHO grade. Histologically confirmed WHO grade 1 tumors may demonstrate unexpected recurrence, malignant transformation, and aggressive behavior, underscoring the molecular complexity and heterogeneity. CONCLUSION: As our understanding of the clinical predictive power of genomic and epigenomic factors matures, we here discuss the importance of surgical decision-making paradigms in the context of our rapidly evolving understanding of these molecular features.
Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/genética , Meningioma/cirugía , Meningioma/patología , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/cirugía , Neoplasias Meníngeas/patología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/cirugía , Recurrencia Local de Neoplasia/patología , Procedimientos Neuroquirúrgicos , Estudios RetrospectivosRESUMEN
Puzzle-shaped pavement cells provide a powerful model system to investigate the cellular and subcellular processes underlying complex cell-shape determination in plants. To better understand pavement cell-shape acquisition and the role of auxin in this process, we focused on the spirals of young stomatal lineage ground cells of Arabidopsis leaf epidermis. The predictability of lobe formation in these cells allowed us to demonstrate that the auxin response gradient forms within the cells of the spiral and fluctuates based on the particular stage of lobe development. We revealed that specific localization of auxin transporters at the different membranes of these young cells changes during the course of lobe formation, suggesting that these fluctuating auxin response gradients are orchestrated via auxin transport to control lobe formation and determine pavement cell shape.
Asunto(s)
Arabidopsis/metabolismo , Forma de la Célula/efectos de los fármacos , Forma de la Célula/fisiología , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Proteínas de Arabidopsis , Transporte Biológico , Epidermis de la Planta/metabolismo , Hojas de la Planta/metabolismo , Estomas de Plantas/metabolismoRESUMEN
Temperature passively affects biological processes involved in plant growth. Therefore, it is challenging to study the dedicated temperature signalling pathways that orchestrate thermomorphogenesis, a suite of elongation growth-based adaptations that enhance leaf-cooling capacity. We screened a chemical library for compounds that restored hypocotyl elongation in the pif4-2-deficient mutant background at warm temperature conditions in Arabidopsis thaliana to identify modulators of thermomorphogenesis. The small aromatic compound 'Heatin', containing 1-iminomethyl-2-naphthol as a pharmacophore, was selected as an enhancer of elongation growth. We show that ARABIDOPSIS ALDEHYDE OXIDASES redundantly contribute to Heatin-mediated hypocotyl elongation. Following a chemical proteomics approach, the members of the NITRILASE1-subfamily of auxin biosynthesis enzymes were identified among the molecular targets of Heatin. Our data reveal that nitrilases are involved in promotion of hypocotyl elongation in response to high temperature and Heatin-mediated hypocotyl elongation requires the NITRILASE1-subfamily members, NIT1 and NIT2. Heatin inhibits NIT1-subfamily enzymatic activity in vitro and the application of Heatin accordingly results in the accumulation of NIT1-subfamily substrate indole-3-acetonitrile in vivo. However, levels of the NIT1-subfamily product, bioactive auxin (indole-3-acetic acid), were also significantly increased. It is likely that the stimulation of hypocotyl elongation by Heatin might be independent of its observed interaction with NITRILASE1-subfamily members. However, nitrilases may contribute to the Heatin response by stimulating indole-3-acetic acid biosynthesis in an indirect way. Heatin and its functional analogues present novel chemical entities for studying auxin biology.
Asunto(s)
Aminohidrolasas/metabolismo , Arabidopsis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hipocótilo/efectos de los fármacos , Aldehído Oxidasa/genética , Aldehído Oxidasa/metabolismo , Aminohidrolasas/genética , Apomorfina/análogos & derivados , Apomorfina/farmacología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Herbicidas/farmacología , Hipocótilo/crecimiento & desarrollo , Ácidos Indolacéticos , Estructura Molecular , Picloram/farmacología , Relación Estructura-Actividad , Transcriptoma/efectos de los fármacosRESUMEN
PURPOSE: WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown. METHOD: We ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID). RESULTS: We identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.Pro204Arg, p.Leu300Ser, p.Glu607Val) in WNK3 in 14 male individuals from 6 unrelated families. Affected individuals had ID with variable presence of epilepsy and structural brain defects. WNK3 variants cosegregated with the disease in 3 different families with multiple affected individuals. This included 1 large family previously diagnosed with X-linked Prieto syndrome. WNK3 pathogenic missense variants localize to the catalytic domain and impede the inhibitory phosphorylation of the neuronal-specific chloride cotransporter KCC2 at threonine 1007, a site critically regulated during the development of synaptic inhibition. CONCLUSION: Pathogenic WNK3 variants cause a rare form of human X-linked ID with variable epilepsy and structural brain abnormalities and implicate impaired phospho-regulation of KCC2 as a pathogenic mechanism.
Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Proteínas Serina-Treonina Quinasas , Simportadores , Encéfalo/anomalías , Dominio Catalítico/genética , Hemicigoto , Humanos , Mutación con Pérdida de Función , Masculino , Herencia Materna/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación Missense , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Simportadores/metabolismoRESUMEN
The plant hormone auxin, a master coordinator of development, regulates hypocotyl elongation during seedling growth. We previously identified the synthetic molecule RubNeddin 1 (RN1), which induces degradation of the AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) transcriptional repressors INDOLE-3-ACETIC ACID-INDUCIBLE3 (IAA3) and IAA7 in planta and strongly promotes hypocotyl elongation. In the present study, we show that despite the structural similarity of RN1 to the synthetic auxin 2,4-dichlorophenoxyacetic-acid (2,4-D), direct treatments with these compounds in Arabidopsis (Arabidopsis thaliana) result in distinct effects, possibly due to enhanced uptake of RN1 and low-level, chronic release of 2,4-D from RN1 in planta. We confirm RN1-induced hypocotyl elongation occurs via specific TRANSPORT INHIBITOR RESISTANT1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) receptor-mediated auxin signaling involving TIR1, AFB2, and AFB5. Using a transcriptome profiling strategy and candidate gene approach, we identify the genes ZINC FINGER OF ARABIDOPSIS THALIANA10 (ZAT10), ARABIDOPSIS TOXICOS EN LEVADURA31 (ATL31), and WRKY DNA-BINDING PROTEIN33 (WRKY33) as being rapidly upregulated by RN1, despite being downregulated by 2,4-D treatment. RN1-induced expression of these genes also occurs via TIR1/AFB-mediated auxin signaling. Our results suggest both hypocotyl elongation and transcription of these genes are induced by RN1 via the promoted degradation of the AUX/IAA transcriptional repressor IAA7. Moreover, these three genes, which are known to be stress-related, act in an inter-dependent transcriptional regulatory network controlling hypocotyl elongation. Together, our results suggest ZAT10, ATL31, and WRKY33 take part in a common gene network regulating hypocotyl elongation in Arabidopsis downstream of a selective auxin perception module likely involving TIR1, AFB2, and AFB5 and inducing the degradation of IAA7.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Hipocótilo/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Hipocótilo/genéticaRESUMEN
INTRODUCTION: Meningiomas are generally considered "benign," however, these tumors can demonstrate variability in behavior and a surprising aggressiveness with elevated rates of recurrence. The advancement of next-generation molecular technologies have led to the understanding of the genomic and epigenomic landscape of meningiomas and more recent correlations with clinical characteristics and behavior. METHODS: Based on a thorough review of recent peer-reviewed publications (PubMed) and edited texts, we provide a molecular overview of meningiomas with a focus on relevant clinical implications. RESULTS: The identification of specific somatic driver mutations has led to the classification of several major genomic subgroups, which account for more than 80% of sporadic meningiomas, and can be distinguished using noninvasive clinical variables to help guide management decisions. Other somatic genomic modifications, including non-coding alterations and copy number variations, have also been correlated with tumor characteristics. Furthermore, epigenomic modifications in meningiomas have recently been described, with DNA methylation being the most widely studied and potentially most clinically relevant. Based on these molecular insights, several clinical trials are currently underway in an effort to establish effective medical therapeutic options for meningioma. CONCLUSION: As we enhance our multiomic understanding of meningiomas, our ability to care for patients with these tumors will continue to improve. Further biological insights will lead to additional progress in precision medicine for meningiomas.
Asunto(s)
Neoplasias Meníngeas , Meningioma , Variaciones en el Número de Copia de ADN , Genómica , Humanos , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/terapia , Meningioma/diagnóstico , Meningioma/genética , Meningioma/terapiaRESUMEN
Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-TERMINALLY ENCODED PEPTIDE 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical, and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.
Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Péptidos/metabolismo , Proteómica , Estrés Fisiológico , Adaptación Fisiológica/genética , Arabidopsis/genética , Transporte Biológico/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Ósmosis , Fosfoproteínas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteoma/metabolismo , Plantones/crecimiento & desarrollo , Estrés Fisiológico/genética , Transcripción GenéticaRESUMEN
Auxin phytohormones control most aspects of plant development through a complex and interconnected signaling network. In the presence of auxin, AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) transcriptional repressors are targeted for degradation by the SKP1-CULLIN1-F-BOX (SCF) ubiquitin-protein ligases containing TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB). CULLIN1-neddylation is required for SCFTIR1/AFB functionality, as exemplified by mutants deficient in the NEDD8-activating enzyme subunit AUXIN-RESISTANT 1 (AXR1). Here, we report a chemical biology screen that identifies small molecules requiring AXR1 to modulate plant development. We selected four molecules of interest, RubNeddin 1 to 4 (RN1 to -4), among which RN3 and RN4 trigger selective auxin responses at transcriptional, biochemical, and morphological levels. This selective activity is explained by their ability to consistently promote the interaction between TIR1 and a specific subset of AUX/IAA proteins, stimulating the degradation of particular AUX/IAA combinations. Finally, we performed a genetic screen using RN4, the RN with the greatest potential for dissecting auxin perception, which revealed that the chromatin remodeling ATPase BRAHMA is implicated in auxin-mediated apical hook development. These results demonstrate the power of selective auxin agonists to dissect auxin perception for plant developmental functions, as well as offering opportunities to discover new molecular players involved in auxin responses.
Asunto(s)
Ácidos Indolacéticos/metabolismo , Desarrollo de la Planta/fisiología , Proteolisis , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteína NEDD8/genética , Desarrollo de la Planta/genética , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Receptores de Superficie Celular/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Plantones/metabolismo , Transducción de Señal , Transcripción Genética/efectos de los fármacosRESUMEN
Among the emerging fungal diseases threatening food security, the Pseudocercospora fijiensis fungus causing black leaf streak disease of banana is one of the most marked examples of a recent worldwide pandemic on a major crop. We assessed how this pathogen spread throughout the latest invaded region, i.e. Central America and the Caribbean. We retraced its population history combining detailed monitoring information on disease outbreaks and population genetic analyses based on large-scale sampling of P. fijiensis isolates from 121 locations throughout the region. The results first suggested that sexual reproduction was not lost during the P. fijiensis expansion, even in the insular Caribbean context, and a high level of genotypic diversity was maintained in all the populations studied. The population genetic structure of P. fijiensis and historical data showed that two disease waves swept northward and southward in all banana-producing countries in the study area from an initial entry point in Honduras, probably mainly through gradual stepwise spore dispersal. Serial founder events accompanying the northern and southern waves led to the establishment of two different genetic groups. A different population structure was detected on the latest invaded islands (Martinique, Dominica and Guadeloupe), revealing multiple introductions and admixture events that may have been partly due to human activities. The results of this study highlight the need to step up surveillance to limit the spread of other known emerging diseases of banana spread mainly by humans, but also to curb gene flow between established pathogen populations which could increase their evolutionary potential.
Asunto(s)
Ascomicetos/genética , Ascomicetos/patogenicidad , Musa/microbiología , Pandemias , Enfermedades de las Plantas/microbiología , Ascomicetos/clasificación , Región del Caribe , América Central , Variación Genética , Genotipo , HumanosRESUMEN
In a world that will rely increasingly on efficient plant growth for sufficient food, it is important to learn about natural mechanisms of phytohormone action. In this work, the introduction of a fluorophore to an auxin molecule represents a sensitive and non-invasive method to directly visualise auxin localisation with high spatiotemporal resolution. The state-of-the-art multidisciplinary approaches of genetic and chemical biology analysis together with live cell imaging, liquid chromatography-mass spectrometry (LC-MS) and surface plasmon resonance (SPR) methods were employed for the characterisation of auxin-related biological activity, distribution and stability of the presented compounds in Arabidopsis thaliana. Despite partial metabolisation in vivo, these fluorescent auxins display an uneven and dynamic distribution leading to the formation of fluorescence maxima in tissues known to concentrate natural auxin, such as the concave side of the apical hook. Importantly, their distribution is altered in response to different exogenous stimuli in both roots and shoots. Moreover, we characterised the subcellular localisation of the fluorescent auxin analogues as being present in the endoplasmic reticulum and endosomes. Our work provides powerful tools to visualise auxin distribution within different plant tissues at cellular or subcellular levels and in response to internal and environmental stimuli during plant development.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Raíces de Plantas/metabolismoRESUMEN
We report the case of a patient with severe progressive epilepsy and peripheral neuropathy and a novel de novo inactivating variant (p.E79X) in Protein Kinase D1 (PKD1). Using CRISPR/Cas9, we engineered the homologous variant in mice and showed that in the homozygote mouse, it recapitulated the patient peripheral nerve hypermyelination pathology. The lethality of the homozygote mouse prevented us from performing an assessment of locomotor behavior. The mutant heterozygote mouse; however, exhibited a significant increase in kainate-induced seizure activity over wild-type mice, supporting the hypothesis that the PKD1 variant is a candidate for the cause of the patient epilepsy. Because PKD1 was previously identified in a kinomic screen as an interacting partner of the K-Cl cotransporter 3 (KCC3), and since KCC3 is involved in peripheral nerve disease and brain hyperexcitability, one possible mechanism of action of PKD1 in disease is through KCC3. We show that catalytically inactive PKD1 stimulates KCC3 activity, consistent with tonic relief of inhibitory phosphorylation. Our findings implicate a novel role for PKD1 in the human nervous system, and uncover a mechanism that could serve as a potential target to promote nervous system myelination.
Asunto(s)
Epilepsia/genética , Vaina de Mielina , Enfermedades del Sistema Nervioso Periférico/etiología , Proteína Quinasa C/genética , Animales , Niño , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Oocitos/metabolismo , Enfermedades del Sistema Nervioso Periférico/genética , Potasio/metabolismo , Proteína Quinasa C/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Convulsiones/inducido químicamente , Convulsiones/genética , Simportadores/genética , Simportadores/metabolismo , Xenopus laevisRESUMEN
The trafficking of subcellular cargos in eukaryotic cells crucially depends on vesicle budding, a process mediated by ARF-GEFs (ADP-ribosylation factor guanine nucleotide exchange factors). In plants, ARF-GEFs play essential roles in endocytosis, vacuolar trafficking, recycling, secretion, and polar trafficking. Moreover, they are important for plant development, mainly through controlling the polar subcellular localization of PIN-FORMED transporters of the plant hormone auxin. Here, using a chemical genetics screen in Arabidopsis thaliana, we identified Endosidin 4 (ES4), an inhibitor of eukaryotic ARF-GEFs. ES4 acts similarly to and synergistically with the established ARF-GEF inhibitor Brefeldin A and has broad effects on intracellular trafficking, including endocytosis, exocytosis, and vacuolar targeting. Additionally, Arabidopsis and yeast (Saccharomyces cerevisiae) mutants defective in ARF-GEF show altered sensitivity to ES4. ES4 interferes with the activation-based membrane association of the ARF1 GTPases, but not of their mutant variants that are activated independently of ARF-GEF activity. Biochemical approaches and docking simulations confirmed that ES4 specifically targets the SEC7 domain-containing ARF-GEFs. These observations collectively identify ES4 as a chemical tool enabling the study of ARF-GEF-mediated processes, including ARF-GEF-mediated plant development.
Asunto(s)
Arabidopsis/efectos de los fármacos , Cromonas/farmacología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transporte de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brefeldino A/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cromonas/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endocitosis/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Plantas Modificadas Genéticamente , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Reparative inflammation is an important protective response that eliminates foreign organisms, damaged cells, and physical irritants. However, inappropriately triggered or sustained inflammation can respectively initiate, propagate, or prolong disease. Post-hemorrhagic (PHH) and post-infectious hydrocephalus (PIH) are the most common forms of hydrocephalus worldwide. They are treated using neurosurgical cerebrospinal fluid (CSF) diversion techniques with high complication and failure rates. Despite their distinct etiologies, clinical studies in human patients have shown PHH and PIH share similar CSF cytokine and immune cell profiles. Here, in light of recent work in model systems, we discuss the concept of "inflammatory hydrocephalus" to emphasize potential shared mechanisms and potential therapeutic vulnerabilities of these disorders. We propose that this change of emphasis could shift our thinking of PHH and PIH from a framework of life-long neurosurgical disorders to that of preventable conditions amenable to immunomodulation.