RESUMEN
Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-TERMINALLY ENCODED PEPTIDE 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical, and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.
Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Péptidos/metabolismo , Proteómica , Estrés Fisiológico , Adaptación Fisiológica/genética , Arabidopsis/genética , Transporte Biológico/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Ósmosis , Fosfoproteínas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteoma/metabolismo , Plantones/crecimiento & desarrollo , Estrés Fisiológico/genética , Transcripción GenéticaRESUMEN
Roots explore the soil for water and nutrients through the continuous production of lateral roots. Lateral roots are formed at regular distances in a steadily elongating organ, but how future sites for lateral root formation become established is not yet understood. Here, we identified C-TERMINALLY ENCODED PEPTIDE 5 (CEP5) as a novel, auxin-repressed and phloem pole-expressed signal assisting in the formation of lateral roots. In addition, based on genetic and expression data, we found evidence for the involvement of its proposed receptor, XYLEM INTERMIXED WITH PHLOEM 1 (XIP1)/CEP RECEPTOR 1 (CEPR1), during the process of lateral root initiation. In conclusion, we report here on the existence of a peptide ligand-receptor kinase interaction that impacts lateral root initiation. Our results represent an important step towards the understanding of the cellular communication implicated in the early phases of lateral root formation.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/crecimiento & desarrollo , Receptores de Péptidos/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Receptores de Péptidos/metabolismoRESUMEN
The root system is fundamental for plant development, is crucial for overall plant growth and is recently being recognized as the key for future crop productivity improvement. A major determinant of root system architecture is the initiation of lateral roots. While knowledge of the genetic and molecular mechanisms regulating lateral root initiation has mainly been achieved in the dicotyledonous plant Arabidopsis thaliana, only scarce data are available for major crop species, generally monocotyledonous plants. The existence of both similarities and differences at the morphological and anatomical level between plant species from both clades raises the question whether regulation of lateral root initiation may or may not be conserved through evolution. Here, we performed a targeted genome-wide transcriptome analysis during lateral root initiation both in primary and in adventitious roots of Zea mays and found evidence for the existence of common transcriptional regulation. Further, based on a comparative analysis with Arabidopsis transcriptome data, a core of genes putatively conserved across angiosperms could be identified. Therefore, it is plausible that common regulatory mechanisms for lateral root initiation are at play in maize and Arabidopsis, a finding that might encourage the extrapolation of knowledge obtained in Arabidopsis to crop species at the level of root system architecture.
Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/farmacología , Raíces de Plantas/genética , Zea mays/genética , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Ciclo Celular , División Celular , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Zea mays/citología , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrolloRESUMEN
In Arabidopsis, more than 1000 putative small signalling peptides have been predicted, but very few have been functionally characterized. One class of small post-translationally modified signalling peptides is the C-TERMINALLY ENCODED PEPTIDE (CEP) family, of which one member has been shown to be involved in regulating root architecture. This work applied a bioinformatics approach to identify more members of the CEP family. It identified 10 additional members and revealed that this family only emerged in flowering plants and was absent from extant members of more primitive plants. The data suggest that the CEP proteins form two subgroups according to the CEP domain. This study further provides an overview of specific CEP expression patterns that offers a comprehensive framework to study the role of the CEP signalling peptides in plant development. For example, expression patterns point to a role in aboveground tissues which was corroborated by the analysis of transgenic lines with perturbed CEP levels. These results form the basis for further exploration of the mechanisms underlying this family of peptides and suggest their putative roles in distinct developmental events of higher plants.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Péptidos/genética , Transducción de Señal , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Evolución Biológica , Embryophyta/citología , Embryophyta/efectos de los fármacos , Embryophyta/genética , Embryophyta/crecimiento & desarrollo , Magnoliopsida/citología , Magnoliopsida/efectos de los fármacos , Magnoliopsida/genética , Magnoliopsida/crecimiento & desarrollo , Datos de Secuencia Molecular , Familia de Multigenes , Péptidos/metabolismo , Fenotipo , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/citología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estructura Terciaria de ProteínaRESUMEN
Lateral root development contributes significantly to the root system, and hence is crucial for plant growth. The study of lateral root initiation is however tedious, because it occurs only in a few cells inside the root and in an unpredictable manner. To circumvent this problem, a Lateral Root Inducible System (LRIS) has been developed. By treating seedlings consecutively with an auxin transport inhibitor and a synthetic auxin, highly controlled lateral root initiation occurs synchronously in the primary root, allowing abundant sampling of a desired developmental stage. The LRIS has first been developed for Arabidopsis thaliana, but can be applied to other plants as well. Accordingly, it has been adapted for use in maize (Zea mays). A detailed overview of the different steps of the LRIS in both plants is given. The combination of this system with comparative transcriptomics made it possible to identify functional homologs of Arabidopsis lateral root initiation genes in other species as illustrated here for the CYCLIN B1;1 (CYCB1;1) cell cycle gene in maize. Finally, the principles that need to be taken into account when an LRIS is developed for other plant species are discussed.
Asunto(s)
Arabidopsis/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Transporte Biológico , Ácidos Indolacéticos/farmacología , Desarrollo de la PlantaRESUMEN
The developmental plasticity of the root system represents a key adaptive trait enabling plants to cope with abiotic stresses such as drought and is therefore important in the current context of global changes. Root branching through lateral root formation is an important component of the adaptability of the root system to its environment. Our understanding of the mechanisms controlling lateral root development has progressed tremendously in recent years through research in the model plant Arabidopsis thaliana (Arabidopsis). These studies have revealed that the phytohormone auxin acts as a common integrator to many endogenous and environmental signals regulating lateral root formation. Here, we review what has been learnt about the myriad roles of auxin during lateral root formation in Arabidopsis.
Asunto(s)
Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Transducción de SeñalRESUMEN
In Arabidopsis thaliana, lateral-root-forming competence of pericycle cells is associated with their position at the xylem poles and depends on the establishment of protoxylem-localized auxin response maxima. In maize, our histological analyses revealed an interruption of the pericycle at the xylem poles, and confirmed the earlier reported proto-phloem-specific lateral root initiation. Phloem-pole pericycle cells were larger and had thinner cell walls compared with the other pericycle cells, highlighting the heterogeneous character of the maize root pericycle. A maize DR5::RFP marker line demonstrated the presence of auxin response maxima in differentiating xylem cells at the root tip and in cells surrounding the proto-phloem vessels. Chemical inhibition of auxin transport indicated that the establishment of the phloem-localized auxin response maxima is crucial for lateral root formation in maize, because in their absence, random divisions of pericycle and endodermis cells occurred, not resulting in organogenesis. These data hint at an evolutionarily conserved mechanism, in which the establishment of vascular auxin response maxima is required to trigger cells in the flanking outer tissue layer for lateral root initiation. It further indicates that lateral root initiation is not dependent on cellular specification or differentiation of the type of vascular tissue.
Asunto(s)
Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Transporte Biológico/efectos de los fármacos , Biomarcadores , Diferenciación Celular , División Celular , Tamaño de la Célula , Pared Celular/metabolismo , Meristema/efectos de los fármacos , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Meristema/ultraestructura , Microscopía Electrónica de Transmisión , Floema/efectos de los fármacos , Floema/crecimiento & desarrollo , Floema/metabolismo , Floema/ultraestructura , Ftalimidas/farmacología , Células Vegetales/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Xilema/efectos de los fármacos , Xilema/crecimiento & desarrollo , Xilema/metabolismo , Xilema/ultraestructura , Zea mays/citología , Zea mays/efectos de los fármacos , Zea mays/metabolismoRESUMEN
In Arabidopsis, lateral root initiation occurs in a subset of pericycle cells at the xylem pole that will divide asymmetrically to give rise to a new lateral root organ. While lateral roots never develop at the phloem pole, it is unclear how the interaction with xylem and phloem poles determines the distinct pericycle identities with different competences. Nevertheless, pericycle cells at these poles are marked by differences in size, by ultrastructural features and by specific proteins and gene expression. Here, we provide transcriptional evidence that pericycle cells are intimately associated with their vascular tissue instead of being a separate concentric layer. This has implications for the identification of cell- and tissue-specific promoters that are necessary to drive and/or alter gene expression locally, avoiding pleiotropic effects. We were able to identify a small set of genes that display specific expression in the phloem or xylem pole pericycle cells, and we were able to identify motifs that are likely to drive expression in either one of those tissues.