Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 300(1): 105554, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072063

RESUMEN

Uropathogenic Escherichia coli (UPEC) secrete multiple siderophore types to scavenge extracellular iron(III) ions during clinical urinary tract infections, despite the metabolic costs of biosynthesis. Here, we find the siderophore enterobactin (Ent) and its related products to be prominent components of the iron-responsive extracellular metabolome of a model UPEC strain. Using defined Ent biosynthesis and import mutants, we identify lower molecular weight dimeric exometabolites as products of incomplete siderophore catabolism, rather than prematurely released biosynthetic intermediates. In E. coli, iron acquisition from iron(III)-Ent complexes requires intracellular esterases that hydrolyze the siderophore. Although UPEC are equipped to consume the products of completely hydrolyzed Ent, we find that Ent and its derivatives may be incompletely hydrolyzed to yield products with retained siderophore activity. These results are consistent with catabolic inefficiency as means to obtain more than one iron ion per siderophore molecule. This is compatible with an evolved UPEC strategy to maximize the nutritional returns from metabolic investments in siderophore biosynthesis.


Asunto(s)
Sideróforos , Escherichia coli Uropatógena , Enterobactina/metabolismo , Compuestos Férricos/metabolismo , Hierro/metabolismo , Sideróforos/metabolismo , Escherichia coli Uropatógena/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(5): E811-E819, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096399

RESUMEN

The endogenous double-stranded RNA (dsRNA) virus Leishmaniavirus (LRV1) has been implicated as a pathogenicity factor for leishmaniasis in rodent models and human disease, and associated with drug-treatment failures in Leishmania braziliensis and Leishmania guyanensis infections. Thus, methods targeting LRV1 could have therapeutic benefit. Here we screened a panel of antivirals for parasite and LRV1 inhibition, focusing on nucleoside analogs to capitalize on the highly active salvage pathways of Leishmania, which are purine auxotrophs. Applying a capsid flow cytometry assay, we identified two 2'-C-methyladenosine analogs showing selective inhibition of LRV1. Treatment resulted in loss of LRV1 with first-order kinetics, as expected for random virus segregation, and elimination within six cell doublings, consistent with a measured LRV1 copy number of about 15. Viral loss was specific to antiviral nucleoside treatment and not induced by growth inhibitors, in contrast to fungal dsRNA viruses. Comparisons of drug-treated LRV1+ and LRV1- lines recapitulated LRV1-dependent pathology and parasite replication in mouse infections, and cytokine secretion in macrophage infections. Agents targeting Totiviridae have not been described previously, nor are there many examples of inhibitors acting against dsRNA viruses more generally. The compounds identified here provide a key proof-of-principle in support of further studies identifying efficacious antivirals for use in in vivo studies of LRV1-mediated virulence.


Asunto(s)
Antivirales/farmacología , Leishmania braziliensis/virología , Leishmania guyanensis/virología , Leishmaniavirus/efectos de los fármacos , Nucleósidos/farmacología , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Leishmaniasis/parasitología , Leishmaniavirus/genética , Leishmaniavirus/metabolismo , Ratones Endogámicos C57BL , Nucleótidos/farmacología
3.
J Biol Chem ; 293(17): 6460-6469, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29511088

RESUMEN

Leishmania is a widespread trypanosomatid protozoan parasite causing significant morbidity and mortality in humans. The endobiont dsRNA virus Leishmania RNA virus 1 (LRV1) chronically infects some strains, where it increases parasite numbers and virulence in murine leishmaniasis models, and correlates with increased treatment failure in human disease. Previously, we reported that 2'-C-methyladenosine (2CMA) potently inhibited LRV1 in Leishmania guyanensis (Lgy) and Leishmania braziliensis, leading to viral eradication at concentrations above 10 µm Here we probed the cellular mechanisms of 2CMA inhibition, involving metabolism, accumulation, and inhibition of the viral RNA-dependent RNA polymerase (RDRP). Activation to 2CMA triphosphate (2CMA-TP) was required, as 2CMA showed no inhibition of RDRP activity from virions purified on cesium chloride gradients. In contrast, 2CMA-TP showed IC50 values ranging from 150 to 910 µm, depending on the CsCl density of the virion (empty, ssRNA-, and dsRNA-containing). Lgy parasites incubated in vitro with 10 µm 2CMA accumulated 2CMA-TP to 410 µm, greater than the most sensitive RDRP IC50 measured. Quantitative modeling showed good agreement between the degree of LRV1 RDRP inhibition and LRV1 levels. These results establish that 2CMA activity is due to its conversion to 2CMA-TP, which accumulates to levels that inhibit RDRP and cause LRV1 loss. This attests to the impact of the Leishmania purine uptake and metabolism pathways, which allow even a weak RDRP inhibitor to effectively eradicate LRV1 at micromolar concentrations. Future RDRP inhibitors with increased potency may have potential therapeutic applications for ameliorating the increased Leishmania pathogenicity conferred by LRV1.


Asunto(s)
Adenosina Trifosfato , Leishmania guyanensis/virología , Leishmaniavirus/enzimología , ARN Polimerasa Dependiente del ARN , Proteínas Virales , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Relación Dosis-Respuesta a Droga , Leishmania guyanensis/metabolismo , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo
4.
Open Forum Infect Dis ; 11(1): ofad628, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38179104

RESUMEN

Background: People who inject drugs (PWID) are at high risk of severe wounds, invasive infections, and overdoses. To date, there are few data on the bacterial and chemical contaminants PWID are exposed to when using illicitly manufactured fentanyls and stimulants. Methods: Previously used injection drug use equipment was recovered in St Louis, Missouri, by harm reduction organizations over a 12-month period. Syringe residue was analyzed for bacterial contaminants by routine culturing followed by whole genome sequencing of single bacterial isolates. Chemical adulterants in syringe residue were identified by liquid chromatography-mass spectrometry. Results: Bacteria were cultured from 58.75% of 160 syringes analyzed. Polymicrobial growth was common and was observed in 23.75% of samples. Bacillus cereus was the most common pathogen present and was observed in 20.6% of syringe residues, followed closely by Staphylococcus aureus at 18.8%. One hundred syringes underwent mass spectrometry, which demonstrated that chemical adulterants were common and included caffeine, diphenhydramine, lidocaine, quinine, and xylazine. Conclusions: Analysis of syringe residue from discarded drug use equipment demonstrates both chemical and biological contaminants, including medically important pathogens and adulterants.

5.
bioRxiv ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37546885

RESUMEN

Uropathogenic E. coli (UPEC) secrete multiple siderophore types to scavenge extracellular iron(III) ions during clinical urinary tract infections, despite the metabolic costs of biosynthesis. Here we find the siderophore enterobactin and its related products to be prominent components of the iron-responsive extracellular metabolome of a model UPEC strain. Using defined enterobactin biosynthesis and import mutants, we identify lower molecular weight, dimeric exometabolites as products of incomplete siderophore catabolism, rather than prematurely released biosynthetic intermediates. In E. coli, iron acquisition from iron(III)-enterobactin complexes requires intracellular esterases that hydrolyze the siderophore. Although UPEC are equipped to consume the products of completely hydrolyzed enterobactin, we find that enterobactin and its derivatives may be incompletely hydrolyzed to yield products with retained siderophore activity. These results are consistent with catabolic inefficiency as means to obtain more than one iron ion per siderophore molecule. This is compatible with an evolved UPEC strategy to maximize the nutritional returns from metabolic investments in siderophore biosynthesis.

6.
Elife ; 112022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35083969

RESUMEN

Clostridioides difficile infection (CDI) imposes a substantial burden on the health care system in the United States. Understanding the biological basis for the spectrum of C. difficile-related disease manifestations is imperative to improving treatment and prevention of CDI. Here, we investigate the correlates of asymptomatic C. difficile colonization using a multi-omics approach. We compared the fecal microbiome and metabolome profiles of patients with CDI versus asymptomatically colonized patients, integrating clinical and pathogen factors into our analysis. We found that CDI patients were more likely to be colonized by strains with the binary toxin (CDT) locus or strains of ribotype 027, which are often hypervirulent. We find that microbiomes of asymptomatically colonized patients are significantly enriched for species in the class Clostridia relative to those of symptomatic patients. Relative to CDI microbiomes, asymptomatically colonized patient microbiomes were enriched with sucrose degradation pathways encoded by commensal Clostridia, in addition to glycoside hydrolases putatively involved in starch and sucrose degradation. Fecal metabolomics corroborates the carbohydrate degradation signature: we identify carbohydrate compounds enriched in asymptomatically colonized patients relative to CDI patients. Further, we reveal that across C. difficile isolates, the carbohydrates sucrose, rhamnose, and lactulose do not serve as robust growth substrates in vitro, consistent with their enriched detection in our metagenomic and metabolite profiling of asymptomatically colonized individuals. We conclude that pathogen genetic variation may be strongly related to disease outcome. More interestingly, we hypothesize that in asymptomatically colonized individuals, carbohydrate metabolism by other commensal Clostridia may prevent CDI by inhibiting C. difficile proliferation. These insights into C. difficile colonization and putative commensal competition suggest novel avenues to develop probiotic or prebiotic therapeutics against CDI.


Asunto(s)
Clostridioides difficile/crecimiento & desarrollo , Clostridioides difficile/genética , Infecciones por Clostridium/microbiología , Microbioma Gastrointestinal , Heces/microbiología , Humanos , Metabolómica , Metagenómica , Ribotipificación , Simbiosis
7.
J Struct Funct Genomics ; 12(2): 83-95, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21359836

RESUMEN

The Seattle Structural Genomics Center for Infectious Disease (SSGCID) focuses on the structure elucidation of potential drug targets from class A, B, and C infectious disease organisms. Many SSGCID targets are selected because they have homologs in other organisms that are validated drug targets with known structures. Thus, many SSGCID targets are expected to be solved by molecular replacement (MR), and reflective of this, all proteins are expressed in native form. However, many community request targets do not have homologs with known structures and not all internally selected targets readily solve by MR, necessitating experimental phase determination. We have adopted the use of iodide ion soaks and single wavelength anomalous dispersion (SAD) experiments as our primary method for de novo phasing. This method uses existing native crystals and in house data collection, resulting in rapid, low cost structure determination. Iodide ions are non-toxic and soluble at molar concentrations, facilitating binding at numerous hydrophobic or positively charged sites. We have used this technique across a wide range of crystallization conditions with successful structure determination in 16 of 17 cases within the first year of use (94% success rate). Here we present a general overview of this method as well as several examples including SAD phasing of proteins with novel folds and the combined use of SAD and MR for targets with weak MR solutions. These cases highlight the straightforward and powerful method of iodide ion SAD phasing in a high-throughput structural genomics environment.


Asunto(s)
Proteínas Bacterianas/química , Fructosa-Bifosfato Aldolasa/química , Yoduros/química , Monoéster Fosfórico Hidrolasas/química , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Babesia bovis/metabolismo , Sitios de Unión , Clonación Molecular , Coccidioides/enzimología , Cristalografía por Rayos X/métodos , Modelos Moleculares , Datos de Secuencia Molecular , Mycobacterium avium/enzimología , Estructura Secundaria de Proteína , Alineación de Secuencia
8.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 9): 1015-21, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21904043

RESUMEN

The Protein Maker is an automated purification system developed by Emerald BioSystems for high-throughput parallel purification of proteins and antibodies. This instrument allows multiple load, wash and elution buffers to be used in parallel along independent lines for up to 24 individual samples. To demonstrate its utility, its use in the purification of five recombinant PB2 C-terminal domains from various subtypes of the influenza A virus is described. Three of these constructs crystallized and one diffracted X-rays to sufficient resolution for structure determination and deposition in the Protein Data Bank. Methods for screening lysis buffers for a cytochrome P450 from a pathogenic fungus prior to upscaling expression and purification are also described. The Protein Maker has become a valuable asset within the Seattle Structural Genomics Center for Infectious Disease (SSGCID) and hence is a potentially valuable tool for a variety of high-throughput protein-purification applications.


Asunto(s)
Automatización/instrumentación , Coccidioides/química , Esterol 14-Desmetilasa/aislamiento & purificación , Automatización/métodos , Coccidioides/enzimología , Esterol 14-Desmetilasa/metabolismo
9.
Protein Sci ; 29(3): 670-685, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31658388

RESUMEN

A protein superfamily with a "Domain of Unknown Function,", DUF3349 (PF11829), is present predominately in Mycobacterium and Rhodococcus bacterial species suggesting that these proteins may have a biological function unique to these bacteria. We previously reported the inaugural structure of a DUF3349 superfamily member, Mycobacterium tuberculosis Rv0543c. Here, we report the structures determined for three additional DUF3349 proteins: Mycobacterium smegmatis MSMEG_1063 and MSMEG_1066 and Mycobacterium abscessus MAB_3403c. Like Rv0543c, the NMR solution structure of MSMEG_1063 revealed a monomeric five α-helix bundle with a similar overall topology. Conversely, the crystal structure of MSMEG_1066 revealed a five α-helix protein with a strikingly different topology and a tetrameric quaternary structure that was confirmed by size exclusion chromatography. The NMR solution structure of a fourth member of the DUF3349 superfamily, MAB_3403c, with 18 residues missing at the N-terminus, revealed a monomeric α-helical protein with a folding topology similar to the three C-terminal helices in the protomer of the MSMEG_1066 tetramer. These structures, together with a GREMLIN-based bioinformatics analysis of the DUF3349 primary amino acid sequences, suggest two subfamilies within the DUF3349 family. The division of the DUF3349 into two distinct subfamilies would have been lost if structure solution had stopped with the first structure in the DUF3349 family, highlighting the insights generated by solving multiple structures within a protein superfamily. Future studies will determine if the structural diversity at the tertiary and quaternary levels in the DUF3349 protein superfamily have functional roles in Mycobacteria and Rhodococcus species with potential implications for structure-based drug discovery.


Asunto(s)
Proteínas Bacterianas/química , Mycobacterium/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica
10.
J Clin Invest ; 129(9): 3792-3806, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31403473

RESUMEN

Clostridioides difficile infection (CDI) accounts for a substantial proportion of deaths attributable to antibiotic-resistant bacteria in the United States. Although C. difficile can be an asymptomatic colonizer, its pathogenic potential is most commonly manifested in patients with antibiotic-modified intestinal microbiomes. In a cohort of 186 hospitalized patients, we showed that host and microbe-associated shifts in fecal metabolomes had the potential to distinguish patients with CDI from those with non-C. difficile diarrhea and C. difficile colonization. Patients with CDI exhibited a chemical signature of Stickland amino acid fermentation that was distinct from those of uncolonized controls. This signature suggested that C. difficile preferentially catabolizes branched chain amino acids during CDI. Unexpectedly, we also identified a series of noncanonical, unsaturated bile acids that were depleted in patients with CDI. These bile acids may derive from an extended host-microbiome dehydroxylation network in uninfected patients. Bile acid composition and leucine fermentation defined a prototype metabolomic model with potential to distinguish clinical CDI from asymptomatic C. difficile colonization.


Asunto(s)
Ácidos y Sales Biliares/química , Infecciones por Clostridium/microbiología , Microbioma Gastrointestinal , Redes y Vías Metabólicas , Adulto , Anciano , Anciano de 80 o más Años , Clostridioides difficile , Diarrea/microbiología , Heces/microbiología , Femenino , Fermentación , Cromatografía de Gases y Espectrometría de Masas , Humanos , Análisis de los Mínimos Cuadrados , Leucina/química , Masculino , Metabolómica , Persona de Mediana Edad , Análisis Multivariante , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA