Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuropsychopharmacology ; 46(9): 1584-1593, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33941861

RESUMEN

Territorial reactive aggression in mice is used to study the biology of aggression-related behavior and is also a critical component of procedures used to study mood disorders, such as chronic social defeat stress. However, quantifying mouse aggression in a systematic, representative, and easily adoptable way that allows direct comparison between cohorts within or between studies remains a challenge. Here, we propose a structural equation modeling approach to quantify aggression observed during the resident-intruder procedure. Using data for 658 sexually experienced CD-1 male mice generated by three research groups across three institutions over a 10-year period, we developed a higher-order confirmatory factor model wherein the combined contributions of latency to the first attack, number of attack bouts, and average attack duration on each trial day (easily observable metrics that require no specialized equipment) are used to quantify individual differences in aggression. We call our final model the Mouse Aggression Detector (MAD) model. Correlation analyses between MAD model factors estimated from multiple large datasets demonstrate generalizability of this measurement approach, and we further establish the stability of aggression scores across time within cohorts and demonstrate the utility of MAD for selecting aggressors which will generate a susceptible phenotype in social defeat experiments. Thus, this novel aggression scoring technique offers a systematic, high-throughput approach for aggressor selection in chronic social defeat stress studies and a more consistent and accurate study of mouse aggression itself.


Asunto(s)
Agresión , Derrota Social , Animales , Conducta Animal , Individualidad , Masculino , Ratones , Estándares de Referencia , Conducta Social , Estrés Psicológico
2.
Biol Psychiatry ; 87(6): 492-501, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31601425

RESUMEN

BACKGROUND: Depression affects women nearly twice as often as men, but the neurobiological underpinnings of this discrepancy are unclear. Preclinical studies in male mice suggest that activity of ventral hippocampus (vHPC) neurons projecting to the nucleus accumbens (NAc) regulates mood-related behavioral responses to stress. We sought to characterize this circuit in both sexes and to investigate its role in potential sex differences in models of depression. METHODS: We used male and female adult C57BL/6J mice in the subchronic variable stress model to precipitate female-specific reduction in sucrose preference and performed gonadectomies to test the contributions of gonadal hormones to this stress response. In addition, ex vivo slice electrophysiology of transgenic Cre-inducible Rosa-eGFP-L10a mice in combination with retrograde viral tracing to identify circuits was used to test contributions of gonadal hormones to sex differences in vHPC afferents. Finally, we used an intersecting viral DREADD (designer receptor exclusively activated by designer drugs) strategy to manipulate vHPC-NAc excitability directly in awake behaving mice. RESULTS: We show a testosterone-dependent lower excitability in male versus female vHPC-NAc neurons and corresponding testosterone-dependent male resilience to reduced sucrose preference after subchronic variable stress. Importantly, we show that long-term DREADD stimulation of vHPC-NAc neurons causes decreased sucrose preference in male mice after subchronic variable stress, whereas DREADD inhibition of this circuit prevents this effect in female mice. CONCLUSIONS: We demonstrate a circuit-specific sex difference in vHPC-NAc neurons that is dependent on testosterone and causes susceptibility to stress in female mice. These data provide a substantive mechanism linking gonadal hormones to cellular excitability and anhedonia-a key feature in depressive states.


Asunto(s)
Andrógenos , Núcleo Accumbens , Animales , Femenino , Hipocampo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA