Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 80(2): 363-375, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456794

RESUMEN

BACKGROUND AND AIMS: In obesity, depletion of KCs expressing CRIg (complement receptor of the Ig superfamily) leads to microbial DNA accumulation, which subsequently triggers tissue inflammation and insulin resistance. However, the mechanism underlying obesity-mediated changes in KC complement immune functions is largely unknown. APPROACH AND RESULTS: Using KC-specific deactivated Cas9 transgenic mice treated with guide RNA, we assessed the effects of restoring CRIg or the serine/arginine-rich splicing factor 3 (SRSF3) abundance on KC functions and metabolic phenotypes in obese mice. The impacts of weight loss on KC responses were evaluated in a diet switch mouse model. The role of SRSF3 in regulating KC functions was also evaluated using KC-specific SRSF3 knockout mice. Here, we report that overexpression of CRIg in KCs of obese mice protects against bacterial DNA accumulation in metabolic tissues. Mechanistically, SRSF3 regulates CRIg expression, which is essential for maintaining the CRIg+ KC population. During obesity, SRSF3 expression decreases, but it is restored with weight loss through a diet switch, normalizing CRIg+ KCs. KC SRSF3 is also repressed in obese human livers. Lack of SRSF3 in KCs in lean and obese mice decreases their CRIg+ population, impairing metabolic parameters. During the diet switch, the benefits of weight loss are compromised due to SRSF3 deficiency. Conversely, SRSF3 overexpression in obese mice preserves CRIg+ KCs and improves metabolic responses. CONCLUSIONS: Restoring SRSF3 abundance in KCs offers a strategy against obesity-associated tissue inflammation and insulin resistance by preventing bacterial DNA accumulation.


Asunto(s)
Resistencia a la Insulina , Macrófagos del Hígado , Obesidad , Factores de Empalme Serina-Arginina , Animales , Factores de Empalme Serina-Arginina/metabolismo , Factores de Empalme Serina-Arginina/genética , Obesidad/metabolismo , Ratones , Macrófagos del Hígado/metabolismo , Humanos , Masculino , Ratones Transgénicos , Ratones Noqueados , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
2.
J Cell Physiol ; 233(4): 3515-3528, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28926107

RESUMEN

The effect of fenofibrate on the metabolism of skeletal muscle and visceral white adipose tissue of diet-induced obese (DIO) mice was investigated. C57BL/6J male mice were fed either a control or high-fat diet for 8 weeks. Fenofibrate (50 mg/Kg BW, daily) was administered by oral gavage during the last two weeks of the experimental period. Insulin-stimulated glucose metabolism in soleus muscles, glucose tolerance test, insulin tolerance test, indirect calorimetry, lipolysis of visceral white adipose tissue, expression of miR-103-3p in adipose tissue, and miR-1a, miR-133a/b, miR-206, let7b-5p, miR-23b-3p, miR-29-3p, miR-143-3p in soleus muscle, genes related to glucose and fatty acid metabolism in adipose tissue and soleus muscle, and proteins (phospho-AMPKα2, Pgc1α, Cpt1b), intramuscular lipid staining, and activities of fatty acid oxidation enzymes in skeletal muscle were investigated. In DIO mice, fenofibrate prevented weight gain induced by HFD feeding by increasing energy expenditure; improved whole body glucose homeostasis, and in skeletal muscle, increased insulin dependent glucose uptake, miR-1a levels, reduced intramuscular lipid accumulation, and phospho-AMPKα2 levels. In visceral adipose tissue of obese mice, fenofibrate decreased basal lipolysis rate and visceral adipocytes hypertrophy, and induced the expression of Glut-4, Irs1, and Cav-1 mRNA and miR-103-3p suggesting a higher insulin sensitivity of the adipocytes. The evidence is presented herein that beneficial effects of fenofibrate on body weight, glucose homeostasis, and muscle metabolism might be related to its action in adipose tissue. Moreover, fenofibrate regulates miR-1a-3p in soleus and miR-103-3p in adipose tissue, suggesting these microRNAs might contribute to fenofibrate beneficial effects on metabolism.


Asunto(s)
Adipocitos/efectos de los fármacos , Dieta Alta en Grasa , Fenofibrato/farmacología , Hipolipemiantes/farmacología , Músculo Esquelético/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Resistencia a la Insulina/genética , Grasa Intraabdominal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA