Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Chem Biol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744986

RESUMEN

G-protein-coupled receptors (GPCRs) are key regulators of human physiology and are the targets of many small-molecule research compounds and therapeutic drugs. While most of these ligands bind to their target GPCR with high affinity, selectivity is often limited at the receptor, tissue and cellular levels. Antibodies have the potential to address these limitations but their properties as GPCR ligands remain poorly characterized. Here, using protein engineering, pharmacological assays and structural studies, we develop maternally selective heavy-chain-only antibody ('nanobody') antagonists against the angiotensin II type I receptor and uncover the unusual molecular basis of their receptor antagonism. We further show that our nanobodies can simultaneously bind to angiotensin II type I receptor with specific small-molecule antagonists and demonstrate that ligand selectivity can be readily tuned. Our work illustrates that antibody fragments can exhibit rich and evolvable pharmacology, attesting to their potential as next-generation GPCR modulators.

2.
Circ Res ; 135(1): 174-197, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38900852

RESUMEN

GPCRs (G protein-coupled receptors), also known as 7 transmembrane domain receptors, are the largest receptor family in the human genome, with ≈800 members. GPCRs regulate nearly every aspect of human physiology and disease, thus serving as important drug targets in cardiovascular disease. Sharing a conserved structure comprised of 7 transmembrane α-helices, GPCRs couple to heterotrimeric G-proteins, GPCR kinases, and ß-arrestins, promoting downstream signaling through second messengers and other intracellular signaling pathways. GPCR drug development has led to important cardiovascular therapies, such as antagonists of ß-adrenergic and angiotensin II receptors for heart failure and hypertension, and agonists of the glucagon-like peptide-1 receptor for reducing adverse cardiovascular events and other emerging indications. There continues to be a major interest in GPCR drug development in cardiovascular and cardiometabolic disease, driven by advances in GPCR mechanistic studies and structure-based drug design. This review recounts the rich history of GPCR research, including the current state of clinically used GPCR drugs, and highlights newly discovered aspects of GPCR biology and promising directions for future investigation. As additional mechanisms for regulating GPCR signaling are uncovered, new strategies for targeting these ubiquitous receptors hold tremendous promise for the field of cardiovascular medicine.


Asunto(s)
Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Transducción de Señal , Descubrimiento de Drogas , Historia del Siglo XXI , Historia del Siglo XX
3.
Mol Pharm ; 21(9): 4441-4449, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39134056

RESUMEN

Relaxin-2 is a peptide hormone with important roles in human cardiovascular and reproductive biology. Its ability to activate cellular responses such as vasodilation, angiogenesis, and anti-inflammatory and antifibrotic effects has led to significant interest in using relaxin-2 as a therapeutic for heart failure and several fibrotic conditions. However, recombinant relaxin-2 has a very short serum half-life, limiting its clinical applications. Here, we present protein engineering efforts targeting the relaxin-2 hormone in order to increase its serum half-life while maintaining its ability to activate the G protein-coupled receptor RXFP1. To achieve this, we optimized a fusion between relaxin-2 and an antibody Fc fragment, generating a version of the hormone with a circulating half-life of around 3 to 5 days in mice while retaining potent agonist activity at the RXFP1 receptor both in vitro and in vivo.


Asunto(s)
Receptores Acoplados a Proteínas G , Receptores de Péptidos , Relaxina , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animales , Relaxina/farmacología , Receptores de Péptidos/agonistas , Receptores de Péptidos/metabolismo , Ratones , Humanos , Semivida , Ingeniería de Proteínas/métodos , Células HEK293 , Fragmentos Fc de Inmunoglobulinas/farmacología , Ratones Endogámicos C57BL , Masculino
4.
Proc Natl Acad Sci U S A ; 117(22): 12435-12443, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32414934

RESUMEN

A decrease in skeletal muscle strength and functional exercise capacity due to aging, frailty, and muscle wasting poses major unmet clinical needs. These conditions are associated with numerous adverse clinical outcomes including falls, fractures, and increased hospitalization. Clenbuterol, a ß2-adrenergic receptor (ß2AR) agonist enhances skeletal muscle strength and hypertrophy; however, its clinical utility is limited by side effects such as cardiac arrhythmias mediated by G protein signaling. We recently reported that clenbuterol-induced increases in contractility and skeletal muscle hypertrophy were lost in ß-arrestin 1 knockout mice, implying that arrestins, multifunctional adapter and signaling proteins, play a vital role in mediating the skeletal muscle effects of ß2AR agonists. Carvedilol, classically defined as a ßAR antagonist, is widely used for the treatment of chronic systolic heart failure and hypertension, and has been demonstrated to function as a ß-arrestin-biased ligand for the ß2AR, stimulating ß-arrestin-dependent but not G protein-dependent signaling. In this study, we investigated whether treatment with carvedilol could enhance skeletal muscle strength via ß-arrestin-dependent pathways. In a murine model, we demonstrate chronic treatment with carvedilol, but not other ß-blockers, indeed enhances contractile force in skeletal muscle and this is mediated by ß-arrestin 1. Interestingly, carvedilol enhanced skeletal muscle contractility despite a lack of effect on skeletal muscle hypertrophy. Our findings suggest a potential unique clinical role of carvedilol to stimulate skeletal muscle contractility while avoiding the adverse effects with ßAR agonists. This distinctive signaling profile could present an innovative approach to treating sarcopenia, frailty, and secondary muscle wasting.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Carvedilol/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , beta-Arrestina 1/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/fisiología , beta-Arrestina 1/genética
5.
Proc Natl Acad Sci U S A ; 117(33): 20284-20291, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32753386

RESUMEN

There is considerable interest in developing antibodies as functional modulators of G protein-coupled receptor (GPCR) signaling for both therapeutic and research applications. However, there are few antibody ligands targeting GPCRs outside of the chemokine receptor group. GPCRs are challenging targets for conventional antibody discovery methods, as many are highly conserved across species, are biochemically unstable upon purification, and possess deeply buried ligand-binding sites. Here, we describe a selection methodology to enrich for functionally modulatory antibodies using a yeast-displayed library of synthetic camelid antibody fragments called "nanobodies." Using this platform, we discovered multiple nanobodies that act as antagonists of the angiotensin II type 1 receptor (AT1R). Following angiotensin II infusion in mice, we found that an affinity matured nanobody antagonist has comparable antihypertensive activity to the angiotensin receptor blocker (ARB) losartan. The unique pharmacology and restricted biodistribution of nanobody antagonists may provide a path for treating hypertensive disorders when small-molecule drugs targeting the AT1R are contraindicated, for example, in pregnancy.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Receptores de Angiotensina/inmunología , Anticuerpos de Dominio Único , Animales , Afinidad de Anticuerpos , Presión Sanguínea , Línea Celular , Humanos , Ratones
6.
Am J Physiol Cell Physiol ; 323(3): C731-C748, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35816644

RESUMEN

G protein-coupled receptors (GPCRs) are of considerable interest due to their importance in a wide range of physiological functions and in a large number of Food and Drug Administration (FDA)-approved drugs as therapeutic entities. With continued study of their function and mechanism of action, there is a greater understanding of how effector molecules interact with a receptor to initiate downstream effector signaling. This review aims to explore the signaling pathways, dynamic structures, and physiological relevance in the cardiovascular system of the three most important GPCR signaling effectors: heterotrimeric G proteins, GPCR kinases (GRKs), and ß-arrestins. We will first summarize their prominent roles in GPCR pharmacology before transitioning into less well-explored areas. As new technologies are developed and applied to studying GPCR structure and their downstream effectors, there is increasing appreciation for the elegance of the regulatory mechanisms that mediate intracellular signaling and function.


Asunto(s)
Arrestinas , Receptores Acoplados a Proteínas G , Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Transductores , beta-Arrestinas/metabolismo
7.
J Proteome Res ; 20(6): 3256-3267, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33950683

RESUMEN

Angiotensin II type 1 receptors (AT1Rs) are one of the most widely studied G-protein-coupled receptors. To fully appreciate the diversity in cellular signaling profiles activated by AT1R transducer-biased ligands, we utilized peroxidase-catalyzed proximity labeling to capture proteins in close proximity to AT1Rs in response to six different ligands: angiotensin II (full agonist), S1I8 (partial agonist), TRV055 and TRV056 (G-protein-biased agonists), and TRV026 and TRV027 (ß-arrestin-biased agonists) at 90 s, 10 min, and 60 min after stimulation (ProteomeXchange Identifier PXD023814). We systematically analyzed the kinetics of AT1R trafficking and determined that distinct ligands lead AT1R to different cellular compartments for downstream signaling activation and receptor degradation/recycling. Distinct proximity labeling of proteins from a number of functional classes, including GTPases, adaptor proteins, and kinases, was activated by different ligands suggesting unique signaling and physiological roles of the AT1R. Ligands within the same class, that is, either G-protein-biased or ß-arrestin-biased, shared high similarity in their labeling profiles. A comparison between ligand classes revealed distinct signaling activation such as greater labeling by G-protein-biased ligands on ESCRT-0 complex proteins that act as the sorting machinery for ubiquitinated proteins. Our study provides a comprehensive analysis of AT1R receptor-trafficking kinetics and signaling activation profiles induced by distinct classes of ligands.


Asunto(s)
Proteómica , Receptor de Angiotensina Tipo 1 , Ligandos , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Transducción de Señal , beta-Arrestinas
8.
Mol Pharmacol ; 100(6): 568-579, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34561298

RESUMEN

ß 1 adrenergic receptors (ß 1ARs) are central regulators of cardiac function and a drug target for cardiac disease. As a member of the G protein-coupled receptor family, ß 1ARs activate cellular signaling by primarily coupling to Gs proteins to activate adenylyl cyclase, cAMP-dependent pathways, and the multifunctional adaptor-transducer protein ß-arrestin. Carvedilol, a traditional ß-blocker widely used in treating high blood pressure and heart failure by blocking ß adrenergic receptor-mediated G protein activation, can selectively stimulate Gs-independent ß-arrestin signaling of ß adrenergic receptors, a process known as ß-arrestin-biased agonism. Recently, a DNA-encoded small-molecule library screen against agonist-occupied ß 2 adrenergic receptors (ß 2ARs) identified Compound-6 (Cmpd-6) to be a positive allosteric modulator for agonists on ß 2ARs. Intriguingly, it was further discovered that Cmpd-6 is positively cooperative with the ß-arrestin-biased ligand carvedilol at ß 2ARs. Here we describe the surprising finding that at ß 1ARs unlike ß 2ARs, Cmpd-6 is cooperative only with carvedilol and not agonists. Cmpd-6 increases the binding affinity of carvedilol for ß 1ARs and potentiates carvedilol-stimulated, ß-arrestin-dependent ß 1AR signaling, such as epidermal growth factor receptor transactivation and extracellular signal-regulated kinase activation, whereas it does not have an effect on Gs-mediated cAMP generation. In vivo, Cmpd-6 enhances the antiapoptotic, cardioprotective effect of carvedilol in response to myocardial ischemia/reperfusion injury. This antiapoptotic role of carvedilol is dependent on ß-arrestins since it is lost in mice with myocyte-specific deletion of ß-arrestins. Our findings demonstrate that Cmpd-6 is a selective ß-arrestin-biased allosteric modulator of ß 1ARs and highlight its potential clinical utility in enhancing carvedilol-mediated cardioprotection against ischemic injury. SIGNIFICANCE STATEMENT: This study demonstrates the positive cooperativity of Cmpd-6 on ß1ARs as a ß-arrestin-biased positive allosteric modulator. Cmpd-6 selectively enhances the affinity and cellular signaling of carvedilol, a known ß-arrestin-biased ß-blocker for ß1ARs, whereas it has minimal effect on other ligands tested. Importantly, Cmpd-6 enhances the ß-arrestin-dependent in vivo cardioprotective effect of carvedilol during ischemia/reperfusion injury-induced apoptosis. The data support the potential therapeutic application of Cmpd-6 to enhance the clinical benefits of carvedilol in the treatment of cardiac disease.


Asunto(s)
Cardiotónicos/farmacología , Carvedilol/farmacología , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , beta-Arrestinas/metabolismo , Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/farmacología , Regulación Alostérica , Animales , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Transducción de Señal
9.
J Biol Chem ; 294(7): 2500-2518, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30538132

RESUMEN

Reversible ubiquitination of G protein-coupled receptors regulates their trafficking and signaling; whether deubiquitinases regulate myocardial ß1-adrenergic receptors (ß1ARs) is unknown. We report that ubiquitin-specific protease 20 (USP20) deubiquitinates and attenuates lysosomal trafficking of the ß1AR. ß1AR-induced phosphorylation of USP20 Ser-333 by protein kinase A-α (PKAα) was required for optimal USP20-mediated regulation of ß1AR lysosomal trafficking. Both phosphomimetic (S333D) and phosphorylation-impaired (S333A) USP20 possess intrinsic deubiquitinase activity equivalent to WT activity. However, unlike USP20 WT and S333D, the S333A mutant associated poorly with the ß1AR and failed to deubiquitinate the ß1AR. USP20-KO mice showed normal baseline systolic function but impaired ß1AR-induced contractility and relaxation. Dobutamine stimulation did not increase cAMP in USP20-KO left ventricles (LVs), whereas NKH477-induced adenylyl cyclase activity was equivalent to WT. The USP20 homolog USP33, which shares redundant roles with USP20, had no effect on ß1AR ubiquitination, but USP33 was up-regulated in USP20-KO hearts suggesting compensatory regulation. Myocardial ß1AR expression in USP20-KO was drastically reduced, whereas ß2AR expression was maintained as determined by radioligand binding in LV sarcolemmal membranes. Phospho-USP20 was significantly increased in LVs of wildtype (WT) mice after a 1-week catecholamine infusion and a 2-week chronic pressure overload induced by transverse aortic constriction (TAC). Phospho-USP20 was undetectable in ß1AR KO mice subjected to TAC, suggesting a role for USP20 phosphorylation in cardiac response to pressure overload. We conclude that USP20 regulates ß1AR signaling in vitro and in vivo Additionally, ß1AR-induced USP20 phosphorylation may serve as a feed-forward mechanism to stabilize ß1AR expression and signaling during pathological insults to the myocardium.


Asunto(s)
Endopeptidasas/biosíntesis , Regulación Enzimológica de la Expresión Génica , Activación del Canal Iónico , Miocardio/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Sustitución de Aminoácidos , Animales , Endopeptidasas/genética , Ventrículos Cardíacos , Ratones , Ratones Noqueados , Mutación Missense , Fosforilación , Receptores Adrenérgicos beta 1/genética , Ubiquitina Tiolesterasa , Ubiquitinación
10.
Am J Physiol Heart Circ Physiol ; 318(4): H895-H907, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32142379

RESUMEN

Myocardial edema is a consequence of many cardiovascular stressors, including myocardial infarction, cardiac bypass surgery, and hypertension. The aim of this study was to establish a murine model of myocardial edema and elucidate the response of cardiac lymphatics and the myocardium. Myocardial edema without infarction was induced in mice by cauterizing the coronary sinus, increasing pressure in the coronary venous system, and inducing myocardial edema. In male mice, there was rapid development of edema 3 h following coronary sinus cauterization (CSC), with associated dilation of cardiac lymphatics. By 24 h, males displayed significant cardiovascular contractile dysfunction. In contrast, female mice exhibited a temporal delay in the formation of myocardial edema, with onset of cardiovascular dysfunction by 24 h. Furthermore, myocardial edema induced a ring of fibrosis around the epicardial surface of the left ventricle in both sexes that included fibroblasts, immune cells, and increased lymphatics. Interestingly, the pattern of fibrosis and the cells that make up the fibrotic epicardial ring differ between sexes. We conclude that a novel surgical model of myocardial edema without infarct was established in mice. Cardiac lymphatics compensated by exhibiting both an acute dilatory and chronic growth response. Transient myocardial edema was sufficient to induce a robust epicardial fibrotic and inflammatory response, with distinct sex differences, which underscores the sex-dependent differences that exist in cardiac vascular physiology.NEW & NOTEWORTHY Myocardial edema is a consequence of many cardiovascular stressors, including myocardial infarction, cardiac bypass surgery, and high blood pressure. Cardiac lymphatics regulate interstitial fluid balance and, in a myocardial infarction model, have been shown to be therapeutically targetable by increasing heart function. Cardiac lymphatics have only rarely been studied in a noninfarct setting in the heart, and so we characterized the first murine model of increased coronary sinus pressure to induce myocardial edema, demonstrating distinct sex differences in the response to myocardial edema. The temporal pattern of myocardial edema induction and resolution is different between males and females, underscoring sex-dependent differences in the response to myocardial edema. This model provides an important platform for future research in cardiovascular and lymphatic fields with the potential to develop therapeutic interventions for many common cardiovascular diseases.


Asunto(s)
Seno Coronario/cirugía , Modelos Animales de Enfermedad , Edema Cardíaco/patología , Animales , Presión Sanguínea , Cauterización/efectos adversos , Seno Coronario/patología , Edema Cardíaco/etiología , Edema Cardíaco/metabolismo , Femenino , Fibrosis , Vasos Linfáticos/patología , Vasos Linfáticos/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Pericardio/patología
11.
Circ Res ; 123(6): 716-735, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30355236

RESUMEN

GPCRs (G-protein [guanine nucleotide-binding protein]-coupled receptors) play a central physiological role in the regulation of cardiac function in both health and disease and thus represent one of the largest class of surface receptors targeted by drugs. Several antagonists of GPCRs, such as ßARs (ß-adrenergic receptors) and Ang II (angiotensin II) receptors, are now considered standard of therapy for a wide range of cardiovascular disease, such as hypertension, coronary artery disease, and heart failure. Although the mechanism of action for GPCRs was thought to be largely worked out in the 80s and 90s, recent discoveries have brought to the fore new and previously unappreciated mechanisms for GPCR activation and subsequent downstream signaling. In this review, we focus on GPCRs most relevant to the cardiovascular system and discuss traditional components of GPCR signaling and highlight evolving concepts in the field, such as ligand bias, ß-arrestin-mediated signaling, and conformational heterogeneity.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Función Ventricular , Animales , Fármacos Cardiovasculares/uso terapéutico , Células Endoteliales/metabolismo , Células Endoteliales/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Receptores Acoplados a Proteínas G/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Función Ventricular/efectos de los fármacos , Remodelación Ventricular
12.
Proc Natl Acad Sci U S A ; 113(50): 14426-14431, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911784

RESUMEN

The Frank-Starling law of the heart is a physiological phenomenon that describes an intrinsic property of heart muscle in which increased cardiac filling leads to enhanced cardiac contractility. Identified more than a century ago, the Frank-Starling relationship is currently known to involve length-dependent enhancement of cardiac myofilament Ca2+ sensitivity. However, the upstream molecular events that link cellular stretch to the length-dependent myofilament Ca2+ sensitivity are poorly understood. Because the angiotensin II type 1 receptor (AT1R) and the multifunctional transducer protein ß-arrestin have been shown to mediate mechanosensitive cellular signaling, we tested the hypothesis that these two proteins are involved in the Frank-Starling mechanism of the heart. Using invasive hemodynamics, we found that mice lacking ß-arrestin 1, ß-arrestin 2, or AT1R were unable to generate a Frank-Starling force in response to changes in cardiac volume. Although wild-type mice pretreated with the conventional AT1R blocker losartan were unable to enhance cardiac contractility with volume loading, treatment with a ß-arrestin-biased AT1R ligand to selectively activate ß-arrestin signaling preserved the Frank-Starling relationship. Importantly, in skinned muscle fiber preparations, we found markedly impaired length-dependent myofilament Ca2+ sensitivity in ß-arrestin 1, ß-arrestin 2, and AT1R knockout mice. Our data reveal ß-arrestin 1, ß-arrestin 2, and AT1R as key regulatory molecules in the Frank-Starling mechanism, which potentially can be targeted therapeutically with ß-arrestin-biased AT1R ligands.


Asunto(s)
Modelos Cardiovasculares , Contracción Miocárdica/fisiología , beta-Arrestina 1/fisiología , Arrestina beta 2/fisiología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Señalización del Calcio/fisiología , Técnicas In Vitro , Losartán/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Miocárdica/efectos de los fármacos , Receptor de Angiotensina Tipo 1/deficiencia , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , beta-Arrestina 1/deficiencia , beta-Arrestina 1/genética , Arrestina beta 2/deficiencia , Arrestina beta 2/genética
13.
J Cell Biochem ; 119(4): 3586-3597, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29231251

RESUMEN

Ligand activation of the angiotensin II type 1 receptor (AT1R), a member of the G protein-coupled receptor (GPCR) family, stimulates intracellular signaling to mediate a variety of physiological responses. The AT1R is also known to be a mechanical sensor. When activated by mechanical stretch, the AT1R can signal via the multifunctional adaptor protein ß-arrestin, rather than through classical heterotrimeric G protein pathways. To date, the AT1R conformation induced by membrane stretch in the absence of ligand was thought to be the same as that induced by ß-arrestin-biased agonists, which selectively engage ß-arrestin thereby preventing G protein coupling. Here, we show that in contrast to the ß-arrestin-biased agonists TRV120023 and TRV120026, membrane stretch uniquely promotes the coupling of the inhibitory G protein (Gαi ) to the AT1R to transduce signaling. Stretch-triggered AT1R-Gαi coupling is required for the recruitment of ß-arrestin2 and activation of downstream signaling pathways, such as EGFR transactivation and ERK phosphorylation. Our findings demonstrate additional complexity in the mechanism of receptor bias in which the recruitment of Gαi is required for allosteric mechanoactivation of the AT1R-induced ß-arrestin-biased signaling.


Asunto(s)
Receptor de Angiotensina Tipo 1/metabolismo , beta-Arrestinas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Células HEK293 , Humanos , Inmunoprecipitación , Microscopía Confocal , Oligopéptidos/farmacología , Receptor de Angiotensina Tipo 1/agonistas , Transducción de Señal/efectos de los fármacos
15.
Circulation ; 131(24): 2120-30, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-25995315

RESUMEN

BACKGROUND: Whether biomechanical force on the heart can induce exosome secretion to modulate cardiovascular function is not known. We investigated the secretion and activity of exosomes containing a key receptor in cardiovascular function, the angiotensin II type I receptor (AT1R). METHODS AND RESULTS: Exosomes containing AT1Rs were isolated from the media overlying AT1R-overexpressing cells exposed to osmotic stretch and from sera of mice undergoing cardiac pressure overload. The presence of AT1Rs in exosomes was confirmed by both electron microscopy and radioligand receptor binding assays and shown to require ß-arrestin2, a multifunctional adaptor protein essential for receptor trafficking. We show that functional AT1Rs are transferred via exosomes in an in vitro model of cellular stretch. Using mice with global and cardiomyocyte conditional deletion of ß-arrestin2, we show that under conditions of in vivo pressure overload the cellular source of the exocytosis of exosomes containing AT1R is the cardiomyocyte. Exogenously administered AT1R-enriched exosomes target cardiomyocytes, skeletal myocytes, and mesenteric resistance vessels and are sufficient to confer blood pressure responsiveness to angiotensin II infusion in AT1R knockout mice. CONCLUSIONS: AT1R-enriched exosomes are released from the heart under conditions of in vivo cellular stress to likely modulate vascular responses to neurohormonal stimulation. In the context of the whole organism, the concept of G protein-coupled receptor trafficking should consider circulating exosomes as part of the reservoir of functional AT1Rs.


Asunto(s)
Exosomas/química , Miocitos Cardíacos/química , Receptor de Angiotensina Tipo 1/sangre , Estrés Mecánico , Animales , Arrestinas/deficiencia , Arrestinas/genética , Arrestinas/fisiología , Presión Sanguínea , Constricción , Exosomas/fisiología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Células Musculares/metabolismo , Miocitos Cardíacos/ultraestructura , Presión Osmótica , Transporte de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Ensayo de Unión Radioligante , Receptor de Angiotensina Tipo 1/deficiencia , Receptor de Angiotensina Tipo 1/genética , Resistencia Vascular , beta-Arrestinas
16.
Circ Res ; 114(5): 833-44, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24334028

RESUMEN

RATIONALE: MicroRNAs (miRs) are small, noncoding RNAs that function to post-transcriptionally regulate gene expression. First transcribed as long primary miR transcripts (pri-miRs), they are enzymatically processed in the nucleus by Drosha into hairpin intermediate miRs (pre-miRs) and further processed in the cytoplasm by Dicer into mature miRs where they regulate cellular processes after activation by a variety of signals such as those stimulated by ß-adrenergic receptors (ßARs). Initially discovered to desensitize ßAR signaling, ß-arrestins are now appreciated to transduce multiple effector pathways independent of G-protein-mediated second messenger accumulation, a concept known as biased signaling. We previously showed that the ß-arrestin-biased ßAR agonist, carvedilol, activates cellular pathways in the heart. OBJECTIVE: Here, we tested whether carvedilol could activate ß-arrestin-mediated miR maturation, thereby providing a novel potential mechanism for its cardioprotective effects. METHODS AND RESULTS: In human cells and mouse hearts, carvedilol upregulates a subset of mature and pre-miRs, but not their pri-miRs, in ß1AR-, G-protein-coupled receptor kinase 5/6-, and ß-arrestin1-dependent manner. Mechanistically, ß-arrestin1 regulates miR processing by forming a nuclear complex with hnRNPA1 and Drosha on pri-miRs. CONCLUSIONS: Our findings indicate a novel function for ß1AR-mediated ß-arrestin1 signaling activated by carvedilol in miR biogenesis, which may be linked, in part, to its mechanism for cell survival.


Asunto(s)
Arrestinas/metabolismo , MicroARNs/genética , Receptores Adrenérgicos beta 1/metabolismo , Transducción de Señal/fisiología , Agonistas de Receptores Adrenérgicos beta 1/farmacología , Animales , Arrestinas/genética , Carbazoles/farmacología , Carvedilol , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/metabolismo , Propanolaminas/farmacología , Procesamiento Postranscripcional del ARN/fisiología , Receptores Adrenérgicos beta 1/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , beta-Arrestinas
17.
J Cardiovasc Pharmacol ; 67(3): 193-202, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26751266

RESUMEN

G protein-coupled receptors are the largest family of targets for current therapeutics. The classic model of their activation was binary, where agonist binding induced an active conformation and subsequent downstream signaling. Subsequently, the revised concept of biased agonism emerged, where different ligands at the same G protein-coupled receptor selectively activate one downstream pathway versus another. Advances in understanding the mechanism of biased agonism have led to the development of novel ligands, which have the potential for improved therapeutic and safety profiles. In this review, we summarize the theory and most recent breakthroughs in understanding biased signaling, examine recent laboratory investigations concerning biased ligands across different organ systems, and discuss the promising clinical applications of biased agonism.


Asunto(s)
Descubrimiento de Drogas/métodos , Terapia Molecular Dirigida , Receptores Acoplados a Proteínas G/agonistas , Transducción de Señal/efectos de los fármacos , Animales , Sitios de Unión , Humanos , Ligandos , Unión Proteica , Conformación Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad
18.
J Biol Chem ; 289(41): 28271-83, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25170081

RESUMEN

It has recently been appreciated that the angiotensin II type 1 receptor (AT1R), a prototypic member of the G protein-coupled receptor superfamily, also functions as a mechanosensor. Specifically, mechanical stretch activates the AT1R to promote downstream signaling mediated exclusively by the multifunctional scaffold protein, ß-arrestin, in a manner consistent with previously identified ß-arrestin-biased ligands. However, the ligand-independent mechanism by which mechanical stretch promotes ß-arrestin-biased signaling remains unknown. Implicit in the concept of biased agonism (i.e. the ability of an agonist to activate a subset of receptor-mediated signaling pathways) is the notion that distinct active conformations of the receptor mediate differential activation of signaling pathways. Here we determined whether mechanical stretch stabilizes distinct ß-arrestin-activating conformations of the AT1R by using ß-arrestin2-biased agonists as conformational probes in pharmacological and biophysical assays. When tested at cells expressing the AT1R fused to ß-arrestin (AT1R-ß-arrestin2), we found that osmotic stretch increased the binding affinity and potency of the ß-arrestin-biased agonist TRV120023, with no effect on the balanced agonist AngII. In addition, the effect of osmotic stretch on ERK activation was markedly augmented in cells expressing the AT1R-ß-arrestin2 fusion compared with the wild type AT1R and completely blocked in cells expressing the AT1R-Gq fusion. Biophysical experiments with an intramolecular BRET ß-arrestin2 biosensor revealed that osmotic stretch and TRV120023 activate AT1Rs to stabilize ß-arrestin2 active conformations that differ from those stabilized by the AT1R activated by angiotensin II. Together, these data support a novel ligand-independent mechanism whereby mechanical stretch allosterically stabilizes specific ß-arrestin-biased active conformations of the AT1R and has important implications for understanding pathophysiological AT1R signaling.


Asunto(s)
Angiotensina II/metabolismo , Arrestinas/metabolismo , Membrana Celular/metabolismo , Mecanotransducción Celular , Receptor de Angiotensina Tipo 1/agonistas , Proteínas Recombinantes de Fusión/metabolismo , Regulación Alostérica , Angiotensina II/química , Angiotensina II/genética , Arrestinas/genética , Fenómenos Biomecánicos , Técnicas Biosensibles , Membrana Celular/química , Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Oligopéptidos/farmacología , Presión Osmótica , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Proteínas Recombinantes de Fusión/genética , beta-Arrestinas
19.
Am J Physiol Heart Circ Physiol ; 309(9): H1516-27, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26371162

RESUMEN

Ang II type 1a receptor (AT1aR)-mediated activation of MAPKs contributes to thoracic aortic aneurysm (TAA) development in Marfan syndrome (MFS). ß-Arrestin2 (ßarr2) is known to mediate AT1aR-dependent MAPK activation, as well as proproliferative and profibrotic signaling in aortic vascular smooth muscle cells. Therefore, we investigated whether ßarr2-dependent signaling contributes to TAA formation in MFS. We used a murine model of MFS [fibrillin (Fbn)(C1039G/+)] to generate an MFS murine model in combination with genetic ßarr2 deletion (Fbn(C1039G/+)/ßarr2(-/-)). Fbn(C1039G/+)/ßarr2(-/-) mice displayed delayed aortic root dilation compared with Fbn(C1039G/+) mice. The mRNA and protein expression of several mediators of TAA formation, including matrix metalloproteinase (MMP)-2 and -9, was reduced in the aorta of Fbn(C1039G/+)/ßarr2(-/-) mice relative to Fbn(C1039G/+) mice. Activation of ERK1/2 was also decreased in the aortas of Fbn(C1039G/+)/ßarr2(-/-) mice compared with Fbn(C1039G/+) animals. Small interfering RNA targeting ßarr2 inhibited angiotensin-stimulated expression of proaneurysmal signaling mediators in primary aortic root smooth muscle cells. Angiotensin-stimulated expression of the proaneurysmal signaling mediators MMP-2 and -9 was inhibited by blockade of ERK1/2 or the EGF receptor, whereas blockade of the transforming growth factor-ß receptor had no effect. These results suggest that ßarr2 contributes to TAA formation in MFS by regulating ERK1/2-dependent expression of proaneurysmal genes and proteins downstream of the AT1aR. Importantly, this demonstration of the unique signaling mechanism by which ßarr2 contributes to aneurysm formation identifies multiple novel, potential therapeutic targets in MFS.


Asunto(s)
Aneurisma de la Aorta Torácica/genética , Arrestinas/genética , Síndrome de Marfan/genética , ARN Mensajero/metabolismo , Angiotensinas/farmacología , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Modelos Animales de Enfermedad , Receptores ErbB/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/genética , Fibrilinas , Fibrosis , Sistema de Señalización de MAP Quinasas , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Receptor de Angiotensina Tipo 1/genética , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Transducción de Señal , Transcriptoma , beta-Arrestinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA