Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Toxicol Sci ; 198(2): 233-245, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38230816

RESUMEN

Idiosyncratic drug reactions are rare but serious adverse drug reactions unrelated to the known therapeutic properties of the drug and manifest in only a small percentage of the treated population. Animal models play an important role in advancing mechanistic studies examining idiosyncratic drug reactions. However, to be useful, they must possess similarities to those seen clinically. Although mice currently represent the dominant mammalian genetic model, rats are advantageous in many areas of pharmacologic study where their physiology can be examined in greater detail and is more akin to that seen in humans. In the area of immunology, this includes autoimmune responses and susceptibility to diabetes, in which rats more accurately mimic disease states in humans compared with mice. For example, oral nevirapine treatment can induce an immune-mediated skin rash in humans and rats, but not in mice due to the absence of the sulfotransferase required to form reactive metabolites of nevirapine within the skin. Using CRISPR-mediated gene editing, we developed a modified line of transgenic rats in which a segment of IgG-like ectodomain containing the core PD-1 interaction motif containing the native ligand and therapeutic antibody domain in exon 2 was deleted. Removal of this region critical for mediating PD-1/PD-L1 interactions resulted in animals with an increased immune response resulting in liver injury when treated with amodiaquine.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Nevirapina , Humanos , Ratas , Ratones , Animales , Nevirapina/toxicidad , Nevirapina/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Sistemas CRISPR-Cas , Modelos Animales , Hígado/metabolismo , Mamíferos/metabolismo
2.
Exp Neurol ; 351: 114010, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35167826

RESUMEN

Cisplatin is a member of a widely utilized class of chemotherapeutic agent that initiates DNA damage response, cell cycle arrest, and p53-dependent apoptotic cell death in concert with DNA­platinum adduct formation. While normal programmed cell death (PCD) can occur in the developing neuroepithelium in the absence of caspase-3 within certain genetic backgrounds, we observed an absolute dependency upon this executioner caspase with respect to cisplatin-induced PCD in the developing central nervous system (CNS). We therefore examined the nature of this genotoxic injury in the CNS in vivo, in which cisplatin treatment causes widespread cellular injury consistent with hallmarks of apoptosis which are averted upon caspase-3 inhibition. Examination of cisplatin-mediated injury as a function of time revealed the presence of an alternative, delayed form of necroptosis-like cell death which manifests in Casp3-/- neuroepithelia for several days following the normal pattern of apoptosis. Together, these findings suggest a coordinated regulation of these disparate PCD pathways in response to genotoxic stress in vivo and highlight the unique and critical role which caspase-3 plays among executioner caspases in coordinating apoptotic versus necroptotic responsiveness of the developing CNS to genotoxic injury.


Asunto(s)
Caspasas , Cisplatino , Apoptosis/fisiología , Encéfalo/metabolismo , Caspasa 3/metabolismo , Caspasas/metabolismo , Cisplatino/toxicidad
3.
Front Cell Neurosci ; 15: 638021, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938162

RESUMEN

Neural progenitor cell (NPC) transplants are a promising therapy for treating spinal cord injury (SCI), however, their long-term role after engraftment and the relative contribution to ongoing functional recovery remains a key knowledge gap. Selective human cell ablation techniques, currently being developed to improve the safety of progenitor cell transplant therapies in patients, may also be used as tools to probe the regenerative effects attributable to individual grafted cell populations. The Herpes Simplex Virus Thymidine Kinase (HSV-TK) and ganciclovir (GCV) system has been extensively studied in the context of SCI and broader CNS disease. However, the efficacy of brivudine (BVDU), another HSV-TK prodrug with potentially reduced bystander cytotoxic effects and in vivo toxicity, has yet to be investigated for NPC ablation. In this study, we demonstrate successful generation and in vitro ablation of HSV-TK-expressing human iPSC-derived NPCs with a >80% reduction in survival over controls. We validated an HSV-TK and GCV/BVDU synergistic system with iPSC-NPCs using an efficient gene-transfer method and in vivo ablation in a translationally relevant model of SCI. Our findings demonstrate enhanced ablation efficiency and reduced bystander effects when targeting all rapidly dividing cells with combinatorial GCV and BVDU treatment. However, for use in loss of function studies, BVDU alone is optimal due to reduced nonselective cell ablation.

4.
Methods Mol Biol ; 1919: 25-41, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30656619

RESUMEN

In this chapter, we first describe two interchangeable protocols optimized in our lab for deriving definitive neuronal progenitor cells from human pluripotent stem cells (hPSCs). The resultant NPCs can then be propagated and differentiated to produce differing proportions of neurons, oligodendrocytes, and astrocytes as required for in vitro cell culture studies or in vivo transplantation. Following these protocols, we explain the method for transplanting these cells into the rat model of spinal cord injury (SCI).


Asunto(s)
Diferenciación Celular , Células-Madre Neurales/citología , Células Madre Pluripotentes/citología , Trasplante de Células Madre , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Modelos Animales de Enfermedad , Cuerpos Embrioides , Humanos , Células-Madre Neurales/metabolismo , Células Madre Pluripotentes/metabolismo , Ratas , Receptores Notch/metabolismo , Traumatismos de la Médula Espinal/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA