Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ther Drug Monit ; 41(5): 648-656, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30939588

RESUMEN

BACKGROUND: Tuberculosis (TB) remains a critical infectious, contagious disease worldwide with high prevalence and mortality rate. The directly observed treatment short-course therapy includes rifampicin (RMP) and isoniazid (INH) for at least 6 months. The purposes of this scheme are to interrupt the transmissibility of the Mycobacterium tuberculosis complex and to avoid secondary complications. Low plasma concentrations of these anti-TB drugs have been associated with extended treatment duration, therapeutic failure, and relapse. The determination of anthropometric, genetic, and clinical variables that may affect plasma concentrations of RMP and INH might facilitate the detection of patients at increased risk of therapeutic failure. METHODS: A prospective observational study was performed in patients with TB diagnosis. A fixed-dose combined formulation was administered following clinical guidelines, and 12 venous blood samples were collected within 24 hours after dose for the quantification of plasma levels of RMP and INH by high-performance liquid chromatography-ultraviolet. The plasma concentrations versus time for each drug in each patient were assessed by a noncompartmental approach to obtain Cmax, and the area under the concentration-time curve to the last observation point (AUC0-24 h) was calculated by the linear trapezoidal rule. Genetic polymorphisms of the enzyme involved in INH metabolism (NAT2) and proteins involved in RMP transport (glycoprotein-P and OATP1B1) were determined. RESULTS: A total of 34 patients aged between 18 and 72 years with the diagnosis of TB were included in the current study. A multivariate analysis was performed to determine the anthropometric and genetic characteristics that modified the Cmax and AUC0-24 h of RMP and INH. Results indicated that RMP Cmax and AUC0-24 h were affected by sex, dose/weight, and single nucleotide polymorphism of MDR1. In addition, age, body mass index, and NAT2 acetylator genotype were shown to determine the Cmax and AUC0-24 h for INH. CONCLUSIONS: Anthropometric, genetic, and dosage characteristics of Mexican patients with TB are an important source of risk for subtherapeutic plasma concentrations of anti-TB drugs. Factors such as lower-than-recommended RMP dose, male patients with TB, and MDR1 3435 genotype, in addition to age group, body mass index, and INH acetylator phenotype based on NAT2 genotype, should be considered during treatment.


Asunto(s)
Antibióticos Antituberculosos/sangre , Antituberculosos/sangre , Isoniazida/sangre , Rifampin/sangre , Tuberculosis/sangre , Tuberculosis/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Adolescente , Adulto , Anciano , Antropometría/métodos , Antibióticos Antituberculosos/uso terapéutico , Antituberculosos/uso terapéutico , Arilamina N-Acetiltransferasa/genética , Cromatografía Líquida de Alta Presión/métodos , Femenino , Genotipo , Humanos , Isoniazida/uso terapéutico , Masculino , México , Persona de Mediana Edad , Análisis Multivariante , Polimorfismo de Nucleótido Simple/genética , Estudios Prospectivos , Rifampin/uso terapéutico , Tuberculosis/tratamiento farmacológico , Adulto Joven
2.
Artículo en Inglés | MEDLINE | ID: mdl-38951408

RESUMEN

BACKGROUND AND OBJECTIVES: Piperacillin/tazobactam is extensively used off-label to treat late-onset neonatal sepsis, but safety and pharmacokinetic data in this population are limited. Additionally, the organic immaturity of the newborns contributes to a high piperacillin pharmacokinetic variability. This affects the clinical efficacy of the antibiotic treatment and increases the probability of developing drug resistance. This study aimed to evaluate the predictive performance of reported piperacillin population pharmacokinetic models for their application in a model-informed precision dosing strategy in preterm and term Mexican neonatal intensive care patients. METHODS: Published population pharmacokinetic models for piperacillin which included neonates in their study population were identified. From the reference models, structured models, population pharmacokinetic parameters, and interindividual and residual variability data were extracted to be replicated in pharmacokinetic software (NONMEM® version 7.4). For the clinical study, a sampling schedule was designed, and 2-3 blood samples of 250 µL were taken from neonates who met the inclusion criteria. Piperacillin plasma concentrations were determined by liquid chromatography/tandem mass spectrometry. The clinical treatment data were collected, and piperacillin plasma concentrations were estimated using reference pharmacokinetic models for an a priori or Bayesian approach. Statistical methods were used in terms of bias and precision to evaluate the differences between observed and estimated neonatal piperacillin plasma concentrations with the different approaches and to identify the pharmacokinetic model that best fits the neonatal data. RESULTS: A total of 70 plasma samples were collected from 25 neonatal patients, of which 15 were preterm neonates. The overall median value (range) postnatal age, gestational age, body weight, and serum creatinine at the sampling collecting day were 12 (3-26) days, 34.2 (26-41.1) weeks, 1.78 (0.08-3.90) Kg, 0.47 (0.20-0.90) mg/dL, respectively. Three population pharmacokinetic models for piperacillin in infants up to 2 months were identified, and their predictive performance in neonatal data was evaluated. No pharmacokinetic model was suitable for our population using an a priori approach. The model published by Cohen-Wolkowiez et al. in 2014 with a Bayesian approach showed the best performance of the pharmacokinetic models evaluated in our neonatal data. The procedure requires two blood samples (predose and postdose), and, when applied, it predicted 66.6% of the observations with a relative median absolute predicted error of less than 30%. CONCLUSIONS: The population pharmacokinetic model developed by Cohen-Wolkowiez et al. in 2014 demonstrated superior performance in predicting the plasma concentration of piperacillin in preterm and term Mexican neonatal intensive care patients. The Bayesian approach, including two different piperacillin plasma concentrations, was clinically acceptable regarding bias and precision. Its application for model-informed precision dosing can be an option to optimize the piperacillin dosage in our population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA