Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Peripher Nerv Syst ; 29(1): 47-57, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009865

RESUMEN

BACKGROUND AND AIMS: Chemotherapy-induced peripheral neurotoxicity (CIPN) is a common and long-lasting adverse event of several anticancer compounds, for which treatment has not yet been developed. To fill this gap, preclinical studies are warranted, exploiting highly translational outcome measure(s) to transfer data from bench to bedside. Nerve excitability testing (NET) enables to test in vivo axonal properties and can be used to monitor early changes leading to axonal damage. METHODS: We tested NET use in two different CIPN rat models: oxaliplatin (OHP) and paclitaxel (PTX). Animals (female) were chronically treated with either PTX or OHP and compared to respective control animals. NET was performed as soon as the first injection was administered. At the end of the treatment, CIPN onset was verified via a multimodal and robust approach: nerve conduction studies, nerve morphometry, behavioural tests and intraepidermal nerve fibre density. RESULTS: NET showed the typical pattern of axonal hyperexcitability in the 72 h following the first OHP administration, whereas it showed precocious signs of axonal damage in PTX animals. At the end of the month of treatment, OHP animals showed a pattern compatible with a mild axonal sensory polyneuropathy. Instead, PTX cohort was characterised by a rather severe sensory axonal polyneuropathy with minor signs of motor involvement. INTERPRETATION: NET after the first administration demonstrated the ongoing OHP-related channelopathy, whereas in PTX cohort it showed precocious signs of axonal damage. Therefore, NET could be suggested as an early surrogate marker in clinical trials, to detect precocious changes leading to axonal damage.


Asunto(s)
Antineoplásicos , Síndromes de Neurotoxicidad , Enfermedades del Sistema Nervioso Periférico , Polineuropatías , Humanos , Femenino , Ratas , Animales , Antineoplásicos/toxicidad , Oxaliplatino/toxicidad , Axones , Paclitaxel/toxicidad , Síndromes de Neurotoxicidad/diagnóstico
2.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36675203

RESUMEN

Peripheral Neuropathies (PN) are common conditions whose treatment is still lacking in most cases. Animal models are crucial, but experimental procedures should be refined in some cases. We performed a detailed characterization of the ventral caudal nerve to contribute to a more effective assessment of axonal damage in future PN studies. PN was induced via weekly systemic injection of a neurotoxic drug (paclitaxel); we compared the control and PN-affected rats, performing serial neurophysiological evaluations of the caudal nerve for its entire length. On the same nerve portions, we performed light microscopy and ultrastructural pathological observations to assess the severity of damage and verify the integrity of the surrounding structures. Neurophysiological and morphological analyses confirmed that a severe axonopathy had ensued in the PN group, with a length-dependent modality, matching morphological observations. The site of neurophysiological recording (e.g., distance from the base of the tail) was critical for achieving useful data. A flexible experimental paradigm should be considered in animal studies investigating axonal PN, particularly if the expected severity is relevant; the mid-portion of the tail might be the most appropriate site: there damage might be remarkable but neither as extreme as at the tip of the tail nor as mild as at the base of the tail.


Asunto(s)
Tejido Nervioso , Síndromes de Neurotoxicidad , Enfermedades del Sistema Nervioso Periférico , Ratas , Animales , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Tejido Nervioso/patología , Paclitaxel/efectos adversos , Axones/patología , Síndromes de Neurotoxicidad/patología
3.
Int J Mol Sci ; 23(10)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35628600

RESUMEN

Mesenchymal Stem Cells (MSCs) are adult multipotent cells able to increase sensory neuron survival: direct co-culture of MSCs with neurons is pivotal to observe a neuronal survival increase. Despite the identification of some mechanisms of action, little is known about how MSCs physically interact with neurons. The aim of this paper was to investigate and characterize the main mechanisms of interaction between MSCs and neurons. Morphological analysis showed the presence of gap junctions and tunneling nanotubes between MSCs and neurons only in direct co-cultures. Using a diffusible dye, we observed a flow from MSCs to neurons and further analysis demonstrated that MSCs donated mitochondria to neurons. Treatment of co-cultures with the gap junction blocker Carbenoxolone decreased neuronal survival, thus demonstrating the importance of gap junctions and, more in general, of cell communication for the MSC positive effect. We also investigated the role of extracellular vesicles; administration of direct co-cultures-derived vesicles was able to increase neuronal survival. In conclusion, our study demonstrates the presence and the importance of multiple routes of communication between MSCs and neurons. Such knowledge will allow a better understanding of the potential of MSCs and how to maximize their positive effect, with the final aim to provide the best protective treatment.


Asunto(s)
Células Madre Mesenquimatosas , Adulto , Comunicación Celular , Supervivencia Celular/fisiología , Técnicas de Cocultivo , Humanos , Células Receptoras Sensoriales
4.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077454

RESUMEN

Oxaliplatin (OHP)-induced peripheral neurotoxicity (OIPN) is a frequent adverse event of colorectal cancer treatment. OIPN encompasses a chronic and an acute syndrome. The latter consists of transient axonal hyperexcitability, due to unbalance in Na+ voltage-operated channels (Na+VOC). This leads to sustained depolarisation which can activate the reverse mode of the Na+/Ca2+ exchanger 2 (NCX2), resulting in toxic Ca2+ accumulation and axonal damage (ADa). We explored the role of NCX2 in in vitro and in vivo settings. Embryonic rat Dorsal Root Ganglia (DRG) organotypic cultures treated with SEA0400 (SEA), a NCX inhibitor, were used to assess neuroprotection in a proof-of-concept and pilot study to exploit NCX modulation to prevent ADa. In vivo, OHP treated mice (7 mg/Kg, i.v., once a week for 8 weeks) were compared with a vehicle-treated group (n = 12 each). Neurophysiological and behavioural testing were performed to characterise acute and chronic OIPN, and morphological analyses were performed to detect ADa. Immunohistochemistry, immunofluorescence, and western blotting (WB) analyses were also performed to demonstrate changes in NCX2 immunoreactivity and protein expression. In vitro, NCX inhibition was matched by ADa mitigation. In the in vivo part, after verifyingboth acute and chronic OIPN had ensued, we confirmed via immunohistochemistry, immunofluorescence, and WB that a significant NCX2 alteration had ensued in the OHP group. Our data suggest NCX2 involvement in ADa development, paving the way to a new line of research to prevent OIPN.


Asunto(s)
Síndromes de Neurotoxicidad , Intercambiador de Sodio-Calcio , Animales , Axones/metabolismo , Ratones , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Oxaliplatino/efectos adversos , Proyectos Piloto , Ratas , Intercambiador de Sodio-Calcio/metabolismo
5.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494384

RESUMEN

The onset of chemotherapy-induced peripheral neurotoxicity (CIPN) is a leading cause of the dose reduction or discontinuation of cancer treatment due to sensory symptoms. Paclitaxel (PTX) can cause painful peripheral neuropathy, with a negative impact on cancer survivors' quality of life. While recent studies have shown that neuroinflammation is involved in PTX-induced peripheral neurotoxicity (PIPN), the pathophysiology of this disabling side effect remains largely unclear and no effective therapies are available. Therefore, here we investigated the effects of human intravenous immunoglobulin (IVIg) on a PIPN rat model. PTX-treated rats showed mechanical allodynia and neurophysiological alterations consistent with a severe sensory axonal polyneuropathy. In addition, morphological evaluation showed a reduction of intra-epidermal nerve fiber (IENF) density and evidenced axonopathy with macrophage infiltration, which was more prominent in the distal segment of caudal nerves. Three weeks after the last PTX injection, mechanical allodynia was still present in PTX-treated rats, while the full recovery in the group of animals co-treated with IVIg was observed. At the pathological level, this behavioral result was paralleled by prevention of the reduction in IENF density induced by PTX in IVIg co-treated rats. These results suggest that the immunomodulating effect of IVIg co-treatment can alleviate PIPN neurotoxic manifestations, probably through a partial reduction of neuroinflammation.


Asunto(s)
Antineoplásicos Fitogénicos/efectos adversos , Inmunoglobulinas Intravenosas/administración & dosificación , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Paclitaxel/efectos adversos , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/etiología , Animales , Antineoplásicos Fitogénicos/uso terapéutico , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Hiperalgesia/diagnóstico , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Síndromes de Neurotoxicidad/diagnóstico , Paclitaxel/uso terapéutico , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Ratas , Resultado del Tratamiento
6.
Int J Mol Sci ; 20(9)2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31075828

RESUMEN

Despite the different antineoplastic mechanisms of action, peripheral neurotoxicity induced by all chemotherapy drugs (anti-tubulin agents, platinum compounds, proteasome inhibitors, thalidomide) is associated with neuron morphological changes ascribable to cytoskeleton modifications. The "dying back" degeneration of distal terminals (sensory nerves) of dorsal root ganglia sensory neurons, observed in animal models, in in vitro cultures and biopsies of patients is the most evident hallmark of the perturbation of the cytoskeleton. On the other hand, in highly polarized cells like neurons, the cytoskeleton carries out its role not only in axons but also has a fundamental role in dendrite plasticity and in the organization of soma. In the literature, there are many studies focused on the antineoplastic-induced alteration of microtubule organization (and consequently, fast axonal transport defects) while very few studies have investigated the effect of the different classes of drugs on microfilaments, intermediate filaments and associated proteins. Therefore, in this review, we will focus on: (1) Highlighting the fundamental role of the crosstalk among the three filamentous subsystems and (2) investigating pivotal cytoskeleton-associated proteins.


Asunto(s)
Citoesqueleto/patología , Quimioterapia , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/patología , Animales , Modelos Animales de Enfermedad , Humanos , Filamentos Intermedios/patología , Neuronas/patología
7.
J Neuroinflammation ; 15(1): 232, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30131066

RESUMEN

BACKGROUND: Chemotherapy-induced peripheral neurotoxicity (CIPN) is a severe adverse effect in patients receiving antitumor agents, and no effective treatment is available. Although the mechanisms responsible for the development of CIPN are poorly understood, recent findings make neuroinflammation an attractive target to be investigated, particularly when neuropathic pain is a prominent feature such as after bortezomib administration. The aim of our study was to evaluate the effect of intravenous immunoglobulins (IVIg) delivery in chronic CIPN. The related neuro-immune aspects were investigated in a well-characterized rat model of bortezomib-induced peripheral neurotoxicity (BIPN). METHODS: After determination of a suitable schedule based on a preliminary pharmacokinetic pilot study, female Wistar rats were treated with IVIg 1 g/kg every 2 weeks. IVIg treatment was started at the beginning of bortezomib administration ("preventive" schedule), or once BIPN was already ensued after 4 weeks of treatment ("therapeutic" schedule). Neurophysiological and behavioral studies were performed to assess the extent of painful peripheral neurotoxicity induced by bortezomib, and these functional assessments were completed by pathologic examination of peripheral nerves and intraepidermal nerve fiber quantification (IENF). The role of the innate immune response in BIPN was investigated by immunochemistry characterization of macrophage infiltration in peripheral nerves. RESULTS: Both schedules of IVIg administration were able to significantly reduce bortezomib-induced heat and mechanical allodynia. Although these changes were not evidenced at the neurophysiological examination of peripheral nerves, they behavioral effects were paralleled in the animals treated with the preventive schedule by reduced axonopathy in peripheral nerves and significant protection from loss of IENF. Moreover, IVIg administration was very effective in reducing infiltration in peripheral nerves of macrophages with the M1, pro-inflammatory phenotype. CONCLUSION: Our results suggest a prominent role of neuroinflammation in BIPN and that IVIg might be considered as a possible safe and effective therapeutic option preventing M1 macrophage infiltration. However, since neuropathic pain is frequent also in other CIPN types, it also indicates the need for further investigation in other forms of CIPN.


Asunto(s)
Inmunoglobulinas/uso terapéutico , Factores Inmunológicos/uso terapéutico , Macrófagos/efectos de los fármacos , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/patología , Nervios Periféricos/patología , Animales , Antineoplásicos/toxicidad , Peso Corporal/efectos de los fármacos , Bortezomib/toxicidad , Citocinas/metabolismo , Modelos Animales de Enfermedad , Calor/efectos adversos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Macrófagos/patología , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/patología , Conducción Nerviosa/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Infiltración Neutrófila , Estimulación Física/efectos adversos , Ratas , Umbral Sensorial/efectos de los fármacos , Piel/patología
8.
Mol Cell Neurosci ; 74: 10-7, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26921792

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neuro-muscular disease characterized by motor neuron loss. MEF2D and MEF2C are members of the myocyte enhancer factor 2 family (MEF2), a group of transcription factors playing crucial roles both in muscle and in neural development and maintenance; for this reason, a possible involvement of MEF2 in ALS context has been investigated. Since the transcriptional activity of each tissue specific MEF2 isoform is conserved in different cell types, we chose to assess our parameters in an easily accessible and widely used experimental tool such as peripheral blood mononuclear cells (PBMCs) obtained from 30 sporadic ALS patients (sALS), 9 ALS patients with mutations in SOD1 gene (SOD1+) and 30 healthy controls. Gene expression analysis showed a significant up-regulation of MEF2D and MEF2C mRNA levels in both sporadic and SOD1+ ALS patients. Although protein levels were unchanged, a different pattern of distribution for MEF2D and MEF2C proteins was evidenced by immunohistochemistry in patients. A significant down-regulation of MEF2 downstream targets BDNF, KLF6 and RUFY3 was reported in both sALS and SOD1+ ALS patients, consistent with an altered MEF2 transcriptional activity. Furthermore, the potential regulatory effect of histone deacetylase 4 and 5 (HDAC4 and HDAC5) on MEF2D and MEF2C activity was also investigated. We found that MEF2D and HDAC4 colocalize in PBMC nuclei, while HDAC5 was localized in the cytoplasm. However, the unchanged HDACs localization and protein levels between sALS and controls seem to exclude their involvement in MEF2 altered function. In conclusion, our results show a systemic alteration of MEF2D and MEF2C pathways in both sporadic and SOD1+ ALS patients, underlying a possible common feature between the sporadic and the familial form of disease. Although further analyses in other neuromuscular diseases are needed to determine the specificity of changes in these pathways to ALS, measuring MEF2 alterations in accessible biofluids may be useful as biomarkers for disease diagnosis and progression.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Adulto , Anciano , Esclerosis Amiotrófica Lateral/sangre , Esclerosis Amiotrófica Lateral/genética , Biomarcadores/sangre , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas del Citoesqueleto , Femenino , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Factor 6 Similar a Kruppel/genética , Factor 6 Similar a Kruppel/metabolismo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Mutación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Superóxido Dismutasa-1/genética , Regulación hacia Arriba , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
9.
Pain ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38723182

RESUMEN

ABSTRACT: Paclitaxel-induced peripheral neurotoxicity (PIPN) is a potentially dose-limiting side effect in anticancer chemotherapy. Several animal models of PIPN exist, but their results are sometimes difficult to be translated into the clinical setting. We compared 2 widely used PIPN models characterized by marked differences in their methodologies. Female C57BL/6JOlaHsd mice were used, and they received only paclitaxel vehicle (n = 38) or paclitaxel via intravenous injection (n = 19, 70 mg/kg) once a week for 4 weeks (Study 1) or intraperitoneally (n = 19, 10 mg/kg) every 2 days for 7 times (Study 2). At the end of treatment and in the follow-up, mice underwent behavioral and neurophysiological assessments of PIPN. At the same time points, some mice were killed and dorsal root ganglia, skin, and sciatic and caudal nerve samples underwent pathological examination. Serum neurofilament light levels were also measured. The differences in the neurotoxicity parameters were analyzed using a nonparametric Mann-Whitney test, with significance level set at P < 0.05. Study 1 showed significant and consistent behavioral, neurophysiological, pathological, and serological changes induced by paclitaxel administration at the end of treatment, and most of these changes were still evident in the follow-up period. By contrast, study 2 evidenced only a transient small fiber neuropathy, associated with neuropathic pain. Our comparative study clearly distinguished a PIPN model recapitulating all the clinical features of the human condition and a model showing only small fiber neuropathy with neuropathic pain induced by paclitaxel.

10.
Toxics ; 11(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36850969

RESUMEN

Chemotherapy-induced peripheral neurotoxicity is one of the most common dose-limiting toxicities of several widely used anticancer drugs such as platinum derivatives (cisplatin) and taxanes (paclitaxel). Several molecular mechanisms related to the onset of neurotoxicity have already been proposed, most of them having the sensory neurons of the dorsal root ganglia (DRG) and the peripheral nerve fibers as principal targets. In this study we explore chemotherapy-induced peripheral neurotoxicity beyond the neuronocentric view, investigating the changes induced by paclitaxel (PTX) and cisplatin (CDDP) on satellite glial cells (SGC) in the DRG and their crosstalk. Rats were chronically treated with PTX (10 mg/Kg, 1qwx4) or CDDP (2 mg/Kg 2qwx4) or respective vehicles. Morpho-functional analyses were performed to verify the features of drug-induced peripheral neurotoxicity. Qualitative and quantitative immunohistochemistry, 3D immunofluorescence, immunoblotting, and transmission electron microscopy analyses were also performed to detect alterations in SGCs and their interconnections. We demonstrated that PTX, but not CDDP, produces a strong activation of SGCs in the DRG, by altering their interconnections and their physical contact with sensory neurons. SGCs may act as principal actors in PTX-induced peripheral neurotoxicity, paving the way for the identification of new druggable targets for the treatment and prevention of chemotherapy-induced peripheral neurotoxicity.

11.
J Cereb Blood Flow Metab ; 43(7): 1077-1088, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36823998

RESUMEN

Multicentre preclinical randomized controlled trials (pRCTs) are a valuable tool to improve experimental stroke research, but are challenging and therefore underused. A common challenge regards the standardization of procedures across centres. We here present the harmonization phase for the quantification of sensorimotor deficits by composite neuroscore, which was the primary outcome of two multicentre pRCTs assessing remote ischemic conditioning in rodent models of ischemic stroke. Ischemic stroke was induced by middle cerebral artery occlusion for 30, 45 or 60 min in mice and 50, 75 or 100 min in rats, allowing sufficient variability. Eleven animals per species were video recorded during neurobehavioural tasks and evaluated with neuroscore by eight independent raters, remotely and blindly. We aimed at reaching an intraclass correlation coefficient (ICC) ≥0.60 as satisfactory interrater agreement. After a first remote training we obtained ICC = 0.50 for mice and ICC = 0.49 for rats. Errors were identified in animal handling and test execution. After a second remote training, we reached the target interrater agreement for mice (ICC = 0.64) and rats (ICC = 0.69). In conclusion, a multi-step, online harmonization phase proved to be feasible, easy to implement and highly effective to align each centre's behavioral evaluations before project's interventional phase.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Ratones , Animales , Infarto de la Arteria Cerebral Media , Ensayos Clínicos Controlados Aleatorios como Asunto
12.
J Biol Chem ; 286(47): 40900-10, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21949119

RESUMEN

The genetic (stable overexpression of sialyltransferase I, GM3 synthase) or pharmacological (selective pressure by N-(4-hydroxyphenyl)retinamide)) manipulation of A2780 human ovarian cancer cells allowed us to obtain clones characterized by higher GM3 synthase activity compared with wild-type cells. Clones with high GM3 synthase expression had elevated ganglioside levels, reduced in vitro cell motility, and enhanced expression of the membrane adaptor protein caveolin-1 with respect to wild-type cells. In high GM3 synthase-expressing clones, both depletion of gangliosides by treatment with the glucosylceramide synthase inhibitor D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol and silencing of caveolin-1 by siRNA were able to strongly increase in vitro cell motility. The motility of wild-type, low GM3 synthase-expressing cells was reduced in the presence of a Src inhibitor, and treatment of these cells with exogenous gangliosides, able to reduce their in vitro motility, inactivated c-Src kinase. Conversely, ganglioside depletion by D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol treatment or caveolin-1 silencing in high GM3 synthase-expressing cells led to c-Src kinase activation. In high GM3 synthase-expressing cells, caveolin-1 was associated with sphingolipids, integrin receptor subunits, p130(CAS), and c-Src forming a Triton X-100-insoluble noncaveolar signaling complex. These data suggest a role for gangliosides in regulating tumor cell motility by affecting the function of a signaling complex organized by caveolin-1, responsible for Src inactivation downstream to integrin receptors, and imply that GM3 synthase is a key target for the regulation of cell motility in human ovarian carcinoma.


Asunto(s)
Caveolina 1/metabolismo , Movimiento Celular , Gangliósidos/metabolismo , Neoplasias Ováricas/patología , Transducción de Señal , Proteína Tirosina Quinasa CSK , Caveolina 1/deficiencia , Caveolina 1/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Inhibidores Enzimáticos/farmacología , Femenino , Silenciador del Gen , Glucosiltransferasas/antagonistas & inhibidores , Humanos , Integrinas/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Subunidades de Proteína/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Sialiltransferasas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Microambiente Tumoral/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Familia-src Quinasas
13.
Biochem Biophys Rep ; 32: 101353, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36186735

RESUMEN

BackgroundBreast cancer is the most frequent tumor in women. Natural substances represent an important source of innovative therapeutic solutions, eventually integrating or substituting conventional drugs and chemicals. Hibiscus sabdariffa L. is a plant of the Malvaceae family that has raised interest thanks to its anti-inflammatory, antioxidant and anticancer effects. In this work, we evaluated the antitumoral effects of an enriched fraction of Hibiscus sabdariffa L. extract (HsEF) in two human breast cancer cell lines, MCF-7(ERα +) and MDA-MB-231 (triple negative). Methods and resultsCell viability was assessed by MTT and Trypan blue assays. HsEF reduced both cell lines viability in a dose and time dependent manner and this effect results irreversible. In MCF-7 cells immunofluorescence experiments, demonstrated that HsEF induced ERα trans-location from nucleus to perinuclear area and in cytoplasmic compartment. qRT-PCR and western blotting high-lighted that HsEF reduced ERα, BRCA1 and caveolin1 gene and protein expression in MCF-7 cells, but not in MDA-MB-231 cells. Moreover, we demonstrated that HsEF reduced proteasome activity, an increased autophagy, impair migration and invasion in both cell lines. ConclusionsOur data suggest HsEF has an antitumoral effects on both breast tumor cells examined and that ERα involvement could explain the differences observed between the two cell lines.

14.
Biomedicines ; 11(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36672528

RESUMEN

The development and progression of diabetic polyneuropathy (DPN) are due to multiple mechanisms. The creation of reliable animal models of DPN has been challenging and this issue has not yet been solved. However, despite some recognized differences from humans, most of the current knowledge on the pathogenesis of DPN relies on results achieved using rodent animal models. The simplest experimental DPN model reproduces type 1 diabetes, induced by massive chemical destruction of pancreatic beta cells with streptozotocin (STZ). Spontaneous/transgenic models of diabetes are less frequently used, mostly because they are less predictable in clinical course, more expensive, and require a variable time to achieve homogeneous metabolic conditions. Among them, Zucker diabetic fatty (ZDF) rats represent a typical type 2 diabetes model. Both STZ-induced and ZDF rats have been extensively used, but only very few studies have compared the long-term similarities and differences existing between these two models. Moreover, inconsistencies have been reported regarding several aspects of short-term in vivo studies using these models. In this study, we compared the long-term course of DPN in STZ-treated Sprague-Dawley and ZDF rats with a multimodal set of readout measures.

15.
Muscle Nerve ; 44(6): 957-67, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22102467

RESUMEN

INTRODUCTION: Cobalamin (Cbl) deficiency affects the peripheral nervous system (PNS) morphologically and functionally. We investigated whether the octapeptide repeat (OR) region of prion protein (PrP(C)) (which is claimed to have myelinotrophic properties) is involved in the pathogenesis of rat Cbl-deficient (Cbl-D) polyneuropathy. METHODS: We intracerebroventricularly administered antibodies (Abs) against the OR region (OR-Abs) to Cbl-D rats to prevent myelin damage and maximum nerve conduction velocity (MNCV) abnormalities, and PrP(C)s to normal rats to reproduce PNS Cbl-D-like lesions. We measured nerve PrP(C) levels and MNCV. RESULTS: The OR-Abs normalized myelin ultrastructure, MNCV values, and tumor necrosis factor (TNF)-α levels in the sciatic and tibial nerves of Cbl-D rats. PrP(C) levels increased in Cbl-D nerves. The nerves of the PrP(C)-treated rats showed typical Cbl-D lesions, significantly decreased MNCV values, and significantly increased TNF-α levels. CONCLUSIONS: OR-Abs prevent the myelin damage caused by increased OR regions, and excess TNF-α is involved in the pathogenesis of Cbl-D polyneuropathy.


Asunto(s)
Oligopéptidos/toxicidad , Polineuropatías/metabolismo , Proteínas PrPC/toxicidad , Vitamina B 12/toxicidad , Animales , Ratones , Conducción Nerviosa/efectos de los fármacos , Conducción Nerviosa/fisiología , Polineuropatías/inducido químicamente , Polineuropatías/fisiopatología , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/biosíntesis , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología , Vitamina B 12/metabolismo
16.
Eur J Histochem ; 65(s1)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34664808

RESUMEN

Dorsal root ganglia (DRGs) are clusters of sensory neurons that transmit the sensory information from the periphery to the central nervous system, and satellite glial cells (SGCs), their supporting trophic cells. Sensory neurons are pseudounipolar neurons with a heterogeneous neurochemistry reflecting their functional features. DRGs, not protected by the blood brain barrier, are vulnerable to stress and damage of different origin (i.e., toxic, mechanical, metabolic, genetic) that can involve sensory neurons, SGCs or, considering their intimate intercommunication, both cell populations. DRG damage, primary or secondary to nerve damage, produces a sensory peripheral neuropathy, characterized by neurophysiological abnormalities, numbness, paraesthesia and dysesthesia, tingling and burning sensations and neuropathic pain. DRG stress can be morphologically detected by light and electron microscope analysis with alterations in cell size (swelling/atrophy) and in different sub-cellular compartments (i.e., mitochondria, endoplasmic reticulum, and nucleus) of neurons and/or SGCs. In addition, neurochemical changes can be used to portray abnormalities of neurons and SGC. Conventional immunostaining, i.e., immunohistochemical detection of specific molecules in tissue slices can be employed to detect, localize and quantify particular markers of damage in neurons (i.e., nuclear expression ATF3) or SGCs (i.e., increased expression of GFAP), markers of apoptosis (i.e., caspases), markers of mitochondrial suffering and oxidative stress (i.e., 8-OHdG), markers of tissue inflammation (i.e., CD68 for macrophage infiltration), etc. However classical (2D) methods of immunostaining disrupt the overall organization of the DRG, thus resulting in the loss of some crucial information. Whole-mount (3D) methods have been recently developed to investigate DRG morphology and neurochemistry without tissue slicing, giving the opportunity to study the intimate relationship between SGCs and sensory neurons in health and disease. Here, we aim to compare classical (2D) vs whole-mount (3D) approaches to highlight "pros" and "cons" of the two methodologies when analysing neuropathy-induced alterations in DRGs.


Asunto(s)
Ganglios Espinales/patología , Neuralgia/patología , Animales , Humanos , Imagenología Tridimensional , Microscopía Confocal , Neuroglía/patología , Células Receptoras Sensoriales/patología
17.
Biology (Basel) ; 10(11)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34827152

RESUMEN

Glioblastoma is an extremely heterogeneous disease. Treatment failure and tumor recurrence primarily reflect the presence in the tumor core (TC) of the glioma stem cells (GSCs), and secondly the contribution, still to be defined, of the peritumoral brain zone (PBZ). Using the array-CGH platform, we deepened the genomic knowledge about the different components of GBM and we identified new specific biomarkers useful for new therapies. We firstly investigated the genomic profile of 20 TCs of GBM; then, for 14 cases and 7 cases, respectively, we compared these genomic profiles with those of the related GSC cultures and PBZ biopsies. The analysis on 20 TCs confirmed the intertumoral heterogeneity and a high percentage of copy number alterations (CNAs) in GBM canonical pathways. Comparing the genomic profiles of 14 TC-GSC pairs, we evidenced a robust similarity among the two samples of each patient. The shared imbalanced genes are related to the development and progression of cancer and in metabolic pathways, as shown by bioinformatic analysis using DAVID. Finally, the comparison between 7 TC-PBZ pairs leads to the identification of PBZ-unique alterations that require further investigation.

18.
Glycobiology ; 20(1): 62-77, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19759399

RESUMEN

In this paper, we describe the effects of the expression of GM3 synthase at high levels in human ovarian carcinoma cells. Overexpression of GM3 synthase in A2780 cells consistently resulted in elevated ganglioside (GM3, GM2 and GD1a) levels. GM3 synthase overexpressing cells had a growth rate similar to wild-type cells, but showed a strongly reduced in vitro cell motility accompanied by reduced levels of the epithelial-mesenchymal transition marker alpha smooth muscle actin. A similar reduction in cell motility was observed upon treatment with exogenous GM3, GM2, and GM1, but not with GD1a. A photolabeling experiment using radioactive and photoactivable GM3 highlighted several proteins directly interacting with GM3. Among those, caveolin-1 was identified as a GM3-interacting protein in GM3 synthase overexpressing cells. Remarkably, caveolin-1 was markedly upregulated in GM3 synthase overexpressing cells. In addition, the motility of low GM3 synthase expressing cells was also reduced in the presence of a Src kinase inhibitor; on the other hand, higher levels of the inactive form of c-Src were detected in GM3 synthase overexpressing cells, associated with a ganglioside- and caveolin-rich detergent insoluble fraction.


Asunto(s)
Carcinoma/enzimología , Caveolina 1/biosíntesis , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/enzimología , Sialiltransferasas/biosíntesis , Actinas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Cartilla de ADN/química , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Esfingolípidos/química , Familia-src Quinasas/metabolismo
19.
J Neurosci Methods ; 339: 108744, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32353471

RESUMEN

BACKGROUND: Dense and unbiased cellular-resolution representations of extended volumetric central nervous system soft-tissue anatomy are difficult to obtain, even in experimental post-mortem settings. Interestingly, X-ray phase-contrast computed tomography (X-PCI-CT), an emerging soft-tissue-sensitive volumetric imaging technique, can provide multiscale organ- to cellular-level morphological visualizations of neuroanatomical structure. NEW METHOD: Here, we tested different nervous-tissue fixation procedures, conventionally used for transmission electron microscopy, to better establish X-PCI-CT-specific sample-preparation protocols. Extracted rat spinal medullas were alternatively fixed with a standard paraformaldehyde-only aldehyde-based protocol, or in combination with glutaraldehyde. Some specimens were additionally post-fixed with osmium tetroxide. Multiscale X-PCI-CT datasets were collected at several synchrotron radiation facilities, using state-of-the-art setups with effective image voxel sizes of 3.03 to 0.33 µm3, and compared to high-field magnetic resonance imaging, histology and vascular fluorescence microscopy data. RESULTS: Multiscale X-PCI-CT of aldehyde-fixed spinal cord specimens resulted in dense histology-like volumetric representations and quantifications of extended deep spinal micro-vascular networks and of intra-medullary cell populations. Osmium post-fixation increased intra-medullary contrast between white and gray-matter tissues, and enhanced delineation of intra-medullary cellular structure, e.g. axon fibers and motor neuron perikarya. COMPARISON WITH EXISTING METHODS: Volumetric X-PCI-CT provides complementary contrast and higher spatial resolution compared to 9.4 T MRI. X-PCI-CT's advantage over planar histology is the volumetric nature of the cellular-level data obtained, using samples much larger than those fit for volumetric vascular fluorescence microscopy. CONCLUSIONS: Deliberately choosing (post-)fixation protocols tailored for optimal nervous-tissue structural preservation is of paramount importance in achieving effective and targeted neuroimaging via the X-PCI-CT technique.


Asunto(s)
Osmio , Intervención Coronaria Percutánea , Aldehídos , Animales , Ratas , Roedores , Médula Espinal/diagnóstico por imagen , Microtomografía por Rayos X , Rayos X
20.
Int J Stem Cells ; 13(1): 116-126, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-31887847

RESUMEN

BACKGROUND AND OBJECTIVES: Transplantation of pancreatic islets is an intriguing new therapeutic option to face the worldwide spread problem of Type-I diabetes. Currently, its clinical use is limited by several problems, mainly based on the high number of islets required to restore normoglycaemia and by the low survival of the transplanted tissue. A promising attempt to overcome the limits to such an approach was represented by the use of Mesenchymal Stem Cells (MSC). Despite the encouraging results obtained with murine-derived MSC, little is still known about their protective mechanisms. The aim of the present study was to verify the effectiveness, (besides murine MSC), of clinically relevant human-derived MSC (hMSC) on protecting pancreatic islets, thus also shedding light on the putative differences between MSC of different origin. METHODS AND RESULTS: Threefold kinds of co-cultures were therefore in vitro set up (direct, indirect and mixed), to analyze the hMSC effect on pancreatic islet survival and function and to study the putative mechanisms involved. Although in a different way with respect to murine MSC, also human derived cells demonstrated to be effective on protecting pancreatic islet survival. This effect could be due to the release of some trophic factors, such as VEGF and Il-6, and by the reduction of inflammatory cytokine TNF-α. CONCLUSIONS: Therefore, hMSC confirmed their great clinical potential to improve the feasibility of pancreatic islet transplantation therapy against diabetes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA