Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Biol Inorg Chem ; 29(3): 331-338, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38717473

RESUMEN

Two new lanthanide-complexes based on the 5-nitropicolinate ligand (5-npic) were obtained and fully characterized. Single-crystal X-ray diffraction revealed that these compounds are isostructural to a Dy-complex, previously published by us, based on dinuclear monomers link together with an extended hydrogen bond network, providing a final chemical formula of [Ln2(5-npic)6(H2O)4]·(H2O)2, where Ln = Dy (1), Gd (2), and Tb (3). Preliminary photoluminescent studies exhibited a ligand-centered emission for all complexes. The potential antitumoral activity of these materials was assayed in a prostatic cancer cell line (PC-3; the 2nd most common male cancerous disease), showing a significant anticancer activity (50-60% at 500 µg·mL-1). In turn, a high biocompatibility by both, the complexes and their precursors in human immunological HL-60 cells, was evidenced. In view of the strongest toxic effect in the tumoral cell line provided by the free 5-npic ligand (~ 40-50%), the overall anticancer complex performance seems to be triggered by the presence of this molecule.


Asunto(s)
Antineoplásicos , Elementos de la Serie de los Lantanoides , Ácidos Picolínicos , Humanos , Elementos de la Serie de los Lantanoides/química , Elementos de la Serie de los Lantanoides/farmacología , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Masculino , Ensayos de Selección de Medicamentos Antitumorales , Modelos Moleculares , Células HL-60 , Cristalografía por Rayos X , Estructura Molecular , Línea Celular Tumoral , Células PC-3 , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
2.
Chemistry ; 30(29): e202304146, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38687127

RESUMEN

In this work a family of multidimensional (2-(1H-tetrazol-5-yl)ethyl) amino acid coordination compounds have been synthesized and thoroughly characterized. For this purpose, glycine, valine, phenylalanine and tyrosine have been selected as starting amino acids and Mn2+, Zn2+ and Cd2+ as metallic nodes. From one side, for Mn2+ based dimer magnetic resonance imaging studies have been conducted, prompted by the number and disposition of the coordinated water molecules and taking into consideration the promising future of manganese-based coordination compounds as bio-compatible substitutes to conventional Gd based contrast agents. From another side, d10 block metal-based complexes allowed exploring photoluminescence properties derived by in situ synthesized ligands. Finally, amino acid preserved structural chirality allowed us to examine chiroptical properties, particularly focusing on circularly polarized luminescence.

3.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732823

RESUMEN

Flexible electronics, also referred to as printable electronics, represent an interesting technology for implementing electronic circuits via depositing electronic devices onto flexible substrates, boosting their possible applications. Among all flexible electronics, interdigitated electrodes (IDEs) are currently being used for different sensor applications since they offer significant benefits beyond their functionality as capacitors, like the generation of high output voltage, fewer fabrication steps, convenience of application of sensitive coatings, material imaging capability and a potential of spectroscopy measurements via electrical excitation frequency variation. This review examines the role of IDEs in printed and flexible electronics since they are progressively being incorporated into a myriad of applications, envisaging that the growth pattern will continue in the next generations of flexible circuits to come.

4.
Molecules ; 28(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36838833

RESUMEN

As a starting point, a new 3D porous framework with the {[CoL]·0.5DMF·H2O}n chemical formula (where L = 3-amino-4-hydroxybenzoate) is described. Its performance as a single molecule magnet was explored. The study of magnetic properties reveals that Co-MOF shows no frequency-fdependant alternating current (ac) signals under zero direct current (dc) magnetic field, whereas single-molecule magnet behaviour is achieved when CoII ions are diluted in a ZnII based matrix. Interestingly, this strategy renders a bifunctional [CoxZn1-xL]n material that is also characterized by a strong photoluminescent emitting capacity.


Asunto(s)
Metales , Polímeros , Modelos Moleculares , Zinc/química , Iones , Hidroxibenzoatos , Fenómenos Magnéticos
5.
Inorg Chem ; 61(3): 1377-1384, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35015526

RESUMEN

A new Y-based metal-organic framework (MOF) GR-MOF-6 with a chemical formula of {[YL(DMF)2]·(DMF)}n {H3L = 5-[(4-carboxyphenyl)ethynyl] isophthalic acid; DMF = N,N-dimethylformamide} has been prepared by a solvothermal route. Structural characterization reveals that this novel material is a three-dimensional MOF in which the coordination of the tritopic ligand to Y(III) metal ions leads to an intercrossing channel system extending over three dimensions. This material has proven to be a very efficient catalyst in the cyanosilylation of carbonyls, ranking second in catalytic activity among the reported rare earth metal-based MOFs described so far but with the lowest required catalyst loading. In addition, its electrophoretic behavior has been studied in depth, providing a zero-charge point between pH 4 and 5, a peak electrophoretic mobility of -1.553 µm cm V-1 s-1, and a ζ potential of -19.8 mV at pH 10.

6.
Chem Rev ; 120(16): 8378-8415, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32023043

RESUMEN

Water is essential in all aspects of life, being the defining characteristic of our planet and even our body. Regrettably, water pollution is increasingly becoming a challenge due to novel anthropogenic pollutants. Of particular concern are emerging organic contaminants (EOCs), the term used not only to cover newly developed compounds but also compounds newly discovered as contaminants in the environment. Aside from anthropogenic contamination, higher temperature and more extreme and less predictable weather conditions are projected to affect water availability and distribution. Therefore, wastewater treatment has to become a valuable water resource and its reuse is an important issue that must be carried out efficiently. Among the novel technologies considered in water remediation processes, metal-organic frameworks (MOFs) are regarded as promising materials for the elimination of EOCs since they present many properties that commend them in water treatment: large surface area, easy functionalizable cavities, some are stable in water, and synthesized at large scale, etc. This review highlights the advances in the use of MOFs in the elimination (adsorption and/or degradation) of EOCs from water, classifying them by the nature of the contaminant.

7.
Sensors (Basel) ; 22(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35591082

RESUMEN

Two novel metal-organic frameworks (MOFs), based on dysprosium as the metal and the 5-aminoisophthalic acid (5aip) ligand, have been solvothermally synthesized, with the aim of studying and modulating their luminescence properties according to the variation of solvent in the structure. These materials display intense photo-luminescence properties in the solid state at room temperature. Interestingly, one fascinating sensory capacity of compound 2 regards obtaining a variation of the signal, depending on the solvent to which it is exposed. These results pave the way for a new generation of sensitive chemical sensors.

8.
Molecules ; 27(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36432174

RESUMEN

Due to the fast, emerging development of antibiotic-resistant bacteria, the need for novel, efficient routes to battle these pathogens is crucial; in this scenario, metal-organic frameworks (MOFs) are promising materials for combating them effectively. Herein, a novel Cu-MOF-namely 1-that displays the formula [Cu3L2(DMF)2]n (DMF = N,N-dimethylformamide) is described, synthesized by the combination of copper(II) and 3,4-dihydroxybenzoic acid (H3L)-both having well-known antibacterial properties. The resulting three-dimensional structure motivated us to study the antibacterial activity, adsorptive capacity and processability of the MOF in the form of pellets and membranes as a proof-of-concept to evaluate its future application in devices.


Asunto(s)
Antibacterianos , Cobre , Cobre/química , Ligandos , Adsorción , Antibacterianos/farmacología
9.
Faraday Discuss ; 231(0): 356-370, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34240086

RESUMEN

Antibiotics are found in natural waters, raising concern about their human and environmental toxicity and the wide occurrence of antibiotic resistant bacteria. The antibiotic resistance crisis is attributed to the overuse and misuse of these medications. Particularly, sulfamethazine (SMT), an antibiotic commonly used in pigs and cattle for the treatment of bacterial diseases, has been detected in the natural environment (soil and water). Among all the technologies developed to combat the deteriorating water quality and control antimicrobial resistance, heterogeneous photocatalysis should be highlighted for the degradation of refractory organic compounds. Here, we described the SMT adsorption and photodegradation capacity of a highly porous and robust zirconium-based MOF UiO-66 under realistic conditions, and its potential recyclability. Further, its SMT removal capacity was improved by functionalizing the MOF porosity (28.5% of SMT adsorption in 24 h for nanoUiO-66-NH2), and nanosizing the MOF (100% SMT photodegradation in only 4 h for nanoUiO-66). Finally, the safety of the formed by-product during SMT photodegradation was confirmed, reinforcing the potential of the application of UiO-66 in water remediation.


Asunto(s)
Antibacterianos , Ácidos Ftálicos , Adsorción , Animales , Antibacterianos/farmacología , Bovinos , Estructuras Metalorgánicas , Sulfametazina , Porcinos
10.
Int J Mol Sci ; 22(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064702

RESUMEN

A series of diclofenac N-derivatives (2, 4, 6, 8c, 9c, 10a-c) were synthesized in order to test their anti-cancer and anti-inflammatory effects. The anticarcinogen activity has been assayed against three cancer cell lines: HT29, human colon cancer cells; Hep-G2, human hepatic cells; and B16-F10, murine melanoma cells. First, we determined the cytotoxicity of the different compounds, finding that the most effective compound was compound 8c against all cell lines and both compounds 4 and 6 in human Hep-G2 and HT29 cell lines. Compounds 4 and 8c were selected for the percentage of apoptosis determination, cell cycle distribution, and mitochondrial membrane potential measure because these products presented the lowest IC50 values in two of the three cancer cell lines assayed (B16-F10 and HepG2), and were two of the three products with lowest IC50 in HT29 cell line. Moreover, the percentages of apoptosis induction were determined for compounds 4 and 8c, showing that the highest values were between 30 to 60%. Next, the effects of these two compounds were observed on the cellular cycle, resulting in an increase in the cell population in G2/M cell cycle phase after treatment with product 8c, whereas compound 4 increased the cells in phase G0/G1, by possible differentiation process induction. Finally, to determine the possible apoptosis mechanism triggered by these compounds, mitochondrial potential was evaluated, indicating the possible activation of extrinsic apoptotic mechanism. On the other hand, we studied the anti-inflammatory effects of these diclofenac (DCF) derivatives on lipopolysaccharide (LPS) activated RAW 264.7 macrophages-monocytes murine cells by inhibition of nitric oxide (NO) production. As a first step, we determined the cytotoxicity of the synthesized compounds, as well as DCF, against these cells. Then, sub-cytotoxic concentrations were used to determine NO release at different incubation times. The greatest anti-inflammatory effect was observed for products 2, 4, 8c, 10a, 10b, and 9c at 20 µg·mL-1 concentration after 48 h of treatment, with inhibition of produced NO between 60 to 75%, and a concentration that reduces to the 50% the production of NO (IC50 NO) between 2.5 to 25 times lower than that of DCF. In this work, we synthesized and determined for the first time the anti-cancer and anti-inflammatory potential of eight diclofenac N-derivatives. In agreement with the recent evidences suggesting that inflammation may contribute to all states of tumorigenesis, the development of these new derivatives capable of inducing apoptosis and anti-inflammatory effects at very low concentrations represent new effective therapeutic strategies against these diseases.


Asunto(s)
Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Diclofenaco/farmacología , Edema/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Animales , Antiinflamatorios/química , Antineoplásicos/química , Apoptosis , Ciclo Celular , Proliferación Celular , Diclofenaco/química , Humanos , Estructura Molecular , Ratas , Células Tumorales Cultivadas
11.
Molecules ; 26(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34770817

RESUMEN

Tuberculosis (TB) is an infectious disease that causes a great number of deaths in the world (1.5 million people per year). This disease is currently treated by administering high doses of various oral anti-TB drugs for prolonged periods (up to 2 years). While this regimen is normally effective when taken as prescribed, many people with TB experience difficulties in complying with their medication schedule. Furthermore, the oral administration of standard anti-TB drugs causes severe side effects and widespread resistances. Recently, we proposed an original platform for pulmonary TB treatment consisting of mannitol microspheres (Ma MS) containing iron (III) trimesate metal-organic framework (MOF) MIL-100 nanoparticles (NPs). In the present work, we loaded this system with the first-line anti-TB drug isoniazid (INH) and evaluated both the viability and safety of the drug vehicle components, as well as the cell internalization of the formulation in alveolar A549 cells. Results show that INH-loaded MOF (INH@MIL-100) NPs were efficiently microencapsulated in Ma MS, which displayed suitable aerodynamic characteristics for pulmonary administration and non-toxicity. MIL-100 and INH@MIL-100 NPs were efficiently internalized by A549 cells, mainly localized in the cytoplasm. In conclusion, the proposed micro-nanosystem is a good candidate for the pulmonary administration of anti-TB drugs.


Asunto(s)
Antituberculosos/farmacología , Isoniazida/farmacología , Estructuras Metalorgánicas/farmacología , Tuberculosis Pulmonar/tratamiento farmacológico , Células A549 , Administración por Inhalación , Antituberculosos/administración & dosificación , Antituberculosos/química , Cápsulas/administración & dosificación , Cápsulas/química , Cápsulas/farmacología , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Isoniazida/administración & dosificación , Isoniazida/química , Estructuras Metalorgánicas/administración & dosificación , Estructuras Metalorgánicas/química , Tamaño de la Partícula
12.
J Am Chem Soc ; 140(30): 9581-9586, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29989808

RESUMEN

Poisoning and accidental oral intoxication are major health problems worldwide. Considering the insufficient efficacy of the currently available detoxification treatments, a pioneering oral detoxifying adsorbent agent based on a single biocompatible metal-organic framework (MOF) is here proposed for the efficient decontamination of drugs commonly implicated in accidental or voluntary poisoning. Furthermore, the in vivo toxicity and biodistribution of a MOF via oral administration have been investigated for the first time. Orally administered upon a salicylate overdose, this MOF is able to reduce the salicylate gastrointestinal absorption and toxicity more than 40-fold (avoiding histological damage) while exhibiting exceptional gastrointestinal stability (<9% degradation), poor intestinal permeation, and safety.


Asunto(s)
Antídotos/uso terapéutico , Aspirina/envenenamiento , Sobredosis de Droga/prevención & control , Estructuras Metalorgánicas/uso terapéutico , Administración Oral , Adsorción , Animales , Antídotos/administración & dosificación , Antídotos/metabolismo , Antídotos/toxicidad , Aspirina/sangre , Aspirina/química , Aspirina/orina , Femenino , Absorción Gastrointestinal/efectos de los fármacos , Yeyuno/patología , Hígado/patología , Estructuras Metalorgánicas/administración & dosificación , Estructuras Metalorgánicas/metabolismo , Estructuras Metalorgánicas/toxicidad , Ratas Wistar , Estómago/patología , Distribución Tisular
13.
Inorg Chem ; 56(17): 10474-10480, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28820251

RESUMEN

Mesoporous silica Al-MCM-41 nanoparticles have been used, for the first time, as vehicles for the single and dual encapsulation of the cationic CO-releasing molecule (CORM) [Mn(1,4,7-triazacyclononane)(CO)3]+ (ALF472+) and the well-known antineoplastic drug, cis-[PtCl2(NH3)2] (cisplatin). Thus, two new hybrid materials, namely, ALF472@Al-MCM-41 and ALF472-cisplatin@Al-MCM-41, have been isolated and fully characterized. The results reveal that the presence of CORM molecules enhances cisplatin loading 3-fold, yielding a cargo of 0.45 mmol g-1 of ALF472+ and 0.12 mmol g-1 of the platinum complex for ALF472-cisplatin@Al-MCM-41. It is worth noting that ALF472@Al-MCM-41 shows a good dispersion in phosphate buffered saline solution, while the dual hybrid material slightly aggregates in this simulated physiological medium (hydrodynamic size: 112 ± 23 and 336 ± 50 nm, respectively). In addition, both hybrid materials (ALF472@Al-MCM-41 and ALF472-cisplatin@Al-MCM-41) behave as photoactive CO-releasing materials, delivering 0.25 and 0.11 equiv of CO, respectively, after 24 h and exhibiting a more controlled CO delivery than that of the free CORM. Finally, metal leaching studies have confirmed the good retention capacity of Al-MCM-41 toward the potentially toxic manganese fragments (86% of retention after 72 h) as well as the low release of cisplatin (ca. 7% after 72 h).


Asunto(s)
Monóxido de Carbono/química , Cisplatino/química , Complejos de Coordinación/química , Portadores de Fármacos/química , Nanopartículas/química , Dióxido de Silicio/química , Aluminio/química , Cinética , Ligandos , Compuestos Organometálicos
14.
Inorg Chem ; 55(13): 6525-31, 2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-27291890

RESUMEN

The encapsulation of the photoactive, nontoxic, water-soluble, and air-stable cationic CORM [Mn(tacn)(CO)3]Br (tacn = 1,4,7-triazacyclononane) in different inorganic porous matrixes, namely, the metalorganic framework bio-MOF-1, (NH2(CH3)2)2[Zn8(adeninate)4(BPDC)6]·8DMF·11H2O (BPDC = 4,4'-biphenyldicarboxylate), and the functionalized mesoporous silicas MCM-41-SO3H and SBA-15-SO3H, is achieved by a cation exchange strategy. The CO release from these loaded materials, under simulated physiological conditions, is triggered by visible light. The results show that the silica matrixes, which are unaltered under physiological conditions, slow the kinetics of CO release, allowing a more controlled CO supply. In contrast, bio-MOF-1 instability leads to the complete leaching of the CORM. Nevertheless, the degradation of the MOF matrix gives rise to an enhanced CO release rate, which is related to the presence of free adenine in the solution.

15.
Inorg Chem ; 55(5): 2650-63, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26886572

RESUMEN

This work describes synthesis at the nanoscale of the isoreticular metal-organic framework (MOF) series ZnBDP_X, based on the assembly of Zn(II) metal ions and the functionalized organic spacers 1,4-bis(1H-pyrazol-4-yl)-2-X-benzene (H2BDP_X; X = H, NO2, NH2, OH). The colloidal stability of these systems was evaluated under different relevant intravenous and oral-simulated physiological conditions, showing that ZnBDP_OH nanoparticles exhibit good structural and colloidal stability probably because of the formation of a protein corona on their surface that prevents their aggregation. Furthermore, two antitumor drugs (mitroxantrone and [Ru(p-cymene)Cl2(pta)] (RAPTA-C) where pta = 1,3,5-triaza-7-phospaadamantane) were encapsulated within the pores of the ZnBDP_X series in order to investigate the effect of the framework functionalization on the incorporation/delivery of bioactive molecules. Thus, the loading capacity of both drugs within the ZnBDP_X series seems to directly depend on the surface area of the solids. Moreover, ligand functionalization significantly affects both the delivery kinetics and the total amount of released drug. In particular, ZnBDP_OH and ZnBDP_NH2 matrixes show a slower rate of delivery and higher percentage of release than ZnBDP_NO2 and ZnBDP_H systems. Additionally, RAPTA-C delivery from ZnBDP_OH is accompanied by a concomitant and progressive matrix degradation due to the higher polarity of the BPD_OH ligand, highlighting the impact of functionalization of the MOF cavities over the kinetics of delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanotecnología , Compuestos Orgánicos/química , Pirazoles/química , Zinc/química
16.
ChemSusChem ; : e202301350, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661054

RESUMEN

Plastic pollution is one of the main worldwide environmental concerns. Our lifestyle involves persistent plastic consumption, aggravating the low efficiency of wastewater treatment plants in its removal. Nano/microplastics are accumulated in living beings, pushing to identify new water remediation strategies to avoid their harmful effects. Enzymes (e. g., Candida rugosa-CrL) are known natural plastic degraders as catalysts in depolymerization reactions. However, their practical use is limited by their stability, recyclability, and economical concerns. Here, enzyme immobilization in metal-organic frameworks (CrL_MOFs) is originally presented as a new plastic degradation approach to achieve a boosted plastic decomposition in aqueous systems while allowing the catalyst cyclability. Bis-(hydroxyethyl)terephthalate (BHET) was selected as model substrate for decontamination experiments for being the main polyethylene terephthalate (PET) degradation product. Once in contaminated water, CrL_MOFs can eliminate BHET (37 %, 24 h), following two complementary mechanisms: enzymatic degradation (CrL action) and byproducts adsorption (MOF effect). As a proof-of-concept, the capacity of a selected CrL_MOF composite to eliminate the BHET degradation products and its reusability are also investigated. The potential of these systems is envisioned in terms of improving enzyme cyclability, reducing costs along with feasible co-adsorption of plastic byproducts and other harmful contaminants, to successfully remove them in a single step.

17.
J Mater Chem B ; 12(19): 4717-4723, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38655651

RESUMEN

Metal-organic frameworks (MOFs) possess a variety of interesting features related to their composition and structure that make them excellent candidates to be used in agriculture. However, few studies have reported their use as delivery agents of agrochemicals. In this work, the natural polyphenol chlorogenic acid (CGA) was entrapped via simple impregnation in the titanium aminoterephthalate MOF, MIL-125-NH2. A combination of experimental and computational techniques was used to understand and quantify the encapsulated CGA in MIL-125-NH2. Subsequently, CGA delivery studies were carried out in water at different pHs, showing a fast release of CGA during the first 2 h (17.3 ± 0.3% at pH = 6.5). In vivo studies were also performed against larvae of mealworm (Tenebrio molitor), evidencing the long-lasting insecticidal activity of CGA@MIL-125-NH2. This report demonstrates the potential of MOFs in the efficient release of agrochemicals, and paves the way to their study against in vivo models.


Asunto(s)
Ácido Clorogénico , Insecticidas , Estructuras Metalorgánicas , Ácido Clorogénico/química , Ácido Clorogénico/farmacología , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Insecticidas/química , Insecticidas/farmacología , Animales , Tenebrio/química , Tenebrio/efectos de los fármacos , Larva/efectos de los fármacos
18.
Nanomaterials (Basel) ; 14(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38727378

RESUMEN

The recent description of well-defined molecular subtypes of breast cancer has led to the clinical development of a number of successful molecular targets. Particularly, triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with historically poor outcomes, mainly due to the lack of effective targeted therapies. Recent progresses in materials science have demonstrated the impressive properties of metal-organic framework nanoparticles (NPs) as antitumoral drug delivery systems. Here, in a way to achieve efficient bio-interfaces with cancer cells and improve their internalization, benchmarked MIL-100(Fe) NPs were coated with cell membranes (CMs) derived from the human TNBC cell line MDA-MB-468. The prepared CMs-coated metal-organic framework (CMs_MIL-100(Fe)) showed enhanced colloidal stability, cellular uptake, and cytotoxicity in MDA-MB-468 cells compared to non-coated NPs, paving the way for these human CMs-coated MIL-100(Fe) NPs as effective targeted therapies against the challenging TNBC.

19.
Sci Rep ; 14(1): 7882, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570568

RESUMEN

Pharmaceutical active compounds (PhACs) are some of the most recalcitrant water pollutants causing undesired environmental and human effects. In absence of adapted decontamination technologies, there is an urgent need to develop efficient and sustainable alternatives for water remediation. Metal-organic frameworks (MOFs) have recently emerged as promising candidates for adsorbing contaminants as well as providing photoactive sites, as they possess exceptional porosity and chemical versatility. To date, the reported studies using MOFs in water remediation have been mainly focused on the removal of a single type of PhACs and rarely on the combined elimination of PhACs mixtures. Herein, the eco-friendly bismuth-based MOF, SU-101, has been originally proposed as an efficient adsorbent-photocatalyst for the elimination of a mixture of three challenging persistent PhACs, frequently detected in wastewater and surface water in ng L-1 to mg·L-1 concentrations: the antibiotic sulfamethazine (SMT), the anti-inflammatory diclofenac (DCF), and the antihypertensive atenolol (At). Adsorption experiments of the mixture revealed that SU-101 exhibited a great adsorption capacity towards At, resulting in an almost complete removal (94.1 ± 0.8% for combined adsorption) in only 5 h. Also, SU-101 demonstrated a remarkable photocatalytic activity under visible light to simultaneously degrade DCF and SMT (99.6 ± 0.4% and 89.2 ± 1.4%, respectively). In addition, MOF-contaminant interactions, the photocatalytic mechanism and degradation pathways were investigated, also assessing the toxicity of the resulting degradation products. Even further, recycling and regeneration studies were performed, demonstrating its efficient reuse for 4 consecutive cycles without further treatment, and its subsequent successful regeneration by simply washing the material with a NaCl solution.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Humanos , Adsorción , Contaminantes Químicos del Agua/análisis , Aguas Residuales , Atenolol , Estructuras Metalorgánicas/química , Diclofenaco , Agua , Preparaciones Farmacéuticas
20.
ACS Appl Mater Interfaces ; 16(22): 29305-29313, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38798175

RESUMEN

Although agrochemical practices can enhance agricultural productivity, their intensive application has resulted in the deterioration of ecosystems. Therefore, it is necessary to develop more efficient and less toxic methods against pests and infections while improving crop productivity. Moving toward sustainable development, in this work, we originally described the preparation of a composite (ZIF-8@HA) consisting of the coating of zeolitic-like metal-organic framework (MOF) ZIF-8 (based on Zn, an essential micronutrient in plants with antibacterial, antifungal, and antifouling properties) with hydroxyapatite (HA) nanoparticles (i.e., nanofertilizer). The interaction between the HA and ZIF-8 has been characterized through a combination of techniques, such as microscopic techniques, where the presence of a HA coating is demonstrated; or by analysis of the surface charge with a dramatic change in the Z-potential (from +18.7 ± 0.8 to -27.6 ± 0.7 mV for ZIF-8 and ZIF-8@HA, respectively). Interestingly, the interaction of HA with ZIF-8 delays the MOF degradation (from 4 h for pristine ZIF-8 to 168 h for HA-coated material), providing a slower and gradual release of zinc. After a comprehensive characterization, the potential combined fertilizer and bactericidal effect of ZIF-8@HA was investigated in wheat (Triticum aestivum) seeds and Pseudomonas syringae (Ps). ZIF-8@HA (7.3 ppm) demonstrated a great fertilizer effect, increasing shoot (9.4 %) and root length (27.1 %) of wheat seeds after 11 days at 25 °C under dark conditions, improving the results obtained with HA, ZIF-8, or ZnSO4 or even physically mixed constituents (HA + ZIF-8). It was also effective in the growth inhibition (>80 % of growth inhibition) of Ps, a vegetal pathogen causing considerable crop decline. Therefore, this work demonstrates the potential of MOF@HA composites and paves the way as a promising agrochemical with improved fertilizer and antibacterial properties.


Asunto(s)
Agroquímicos , Durapatita , Estructuras Metalorgánicas , Durapatita/química , Durapatita/farmacología , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Agroquímicos/química , Agroquímicos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química , Zeolitas/química , Zeolitas/farmacología , Triticum/química , Triticum/efectos de los fármacos , Imidazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA