Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Pediatr ; 182(9): 4143-4152, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37436522

RESUMEN

Antibiotics are among the most utilized drugs in pediatrics. Nonetheless, there is a lack in pharmacokinetics information for this population, and dosing criteria may vary between healthcare centers. Physiological variability associated with maturation in pediatrics makes it challenging to reach a consensus on adequate dosing, which is further accentuated in more vulnerable groups, such as critically ill or oncology patients. Model-informed precision dosing is a useful practice that allows dose optimization and attainment of antibiotic-specific pharmacokinetic/pharmacodynamic targets. The aim of this study was to evaluate the needs of model-informed precision dosing of antibiotics in a pediatrics unit, at a pilot scale. Pediatric patients under antibiotic treatment were monitored with either a pharmacokinetic/pharmacodynamic optimized sampling scheme or through opportunistic sampling. Clindamycin, fluconazole, linezolid, meropenem, metronidazole, piperacillin, and vancomycin plasma concentrations were quantified through a liquid chromatography coupled to mass spectrometry method. Pharmacokinetic parameters were estimated using a Bayesian approach to verify pharmacokinetic/pharmacodynamic target attainment. A total of 23 pediatric patients aged 2 to 16 years were included, and 43 dosing regimens were evaluated; 27 (63%) of them required adjustments as follows: 14 patients were underdosed, 4 were overdosed, and 9 patients needed infusion rate adjustments. Infusion rate adjustments were mostly recommended for piperacillin and meropenem; daily doses were augmented for vancomycin and metronidazole, meanwhile linezolid was adjusted for under- and overdosing. Clindamycin and fluconazole regimens were not adjusted at all.  Conclusion: Results showcase a lack of antibiotic pharmacokinetic/pharmacodynamic target attainment (particularly for linezolid, vancomycin, meropenem, and piperacillin), and the need for model-informed precision dosing in pediatrics. This study provides pharmacokinetic evidence which can further improve antibiotic dosing practices. What is Known: • Model-informed precision dosing is performed in pediatrics to optimize the treatment of antimicrobial drugs such as vancomycin and aminoglycosides, while its usefulness is debated for other groups (beta-lactams, macrolides, etc.). What is New: • Vulnerable pediatric subpopulations, such as critically ill or oncology patients, can benefit the most from model-informed precision dosing of antibiotics. • Model-informed precision dosing of linezolid, meropenem, piperacillin, and vancomycin is particularly useful in pediatrics, and further research may improve dosing practices altogether.


Asunto(s)
Neoplasias , Vancomicina , Humanos , Niño , Meropenem , Linezolid , Clindamicina , Metronidazol , Enfermedad Crítica/terapia , Teorema de Bayes , Fluconazol , Antibacterianos/uso terapéutico , Piperacilina/farmacocinética , Neoplasias/tratamiento farmacológico
2.
J Sep Sci ; 44(2): 521-529, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33200497

RESUMEN

The aim of this study was to establish and validate an alternative high-performance liquid chromatography method for simultaneous quantification of pyrazinamide, isoniazid, acetyl-isoniazid and rifampicin in plasma of patients under treatment for tuberculosis. The performed method was lineal (r2  > 0.99) in the range of 2.00-50.00 µg/mL for pyrazinamide, 0.50-20.00 µg/mL for both acetyl-isoniazid and isoniazid, and 1.20-25.00 µg/mL for rifampicin. Precision and trueness were demonstrated with coefficient of variation < 15% and deviations < 15%, respectively, for quality controls samples. The lower limits of quantification were 2.00, 0.50, 0.50, and 1.20 µg/mL for pyrazinamide, isoniazid, acetyl-isoniazid and rifampicin, respectively. The method was applied for the analysis of plasma from patients with tuberculosis. This method allowed ensuring reliable quantification of the target compounds and their pharmacokinetics parameters. In general, the mean values of maximum concentration of each antituberculosis drug were located within their respective reference therapeutic ranges. However, patients with sub-therapeutic plasma concentrations of isoniazid and rifampicin were detected. This is the first analytical technique that simultaneously quantifies isoniazid, acetyl-isoniazid, rifampicin, and pyrazinamide concentrations from plasma samples by high-performance liquid chromatography with ultraviolet/visible. The proposed method could be applied for therapeutic drug monitoring and pharmacokinetics studies of the four compounds throughout the treatment of tuberculosis patients.


Asunto(s)
Isoniazida/sangre , Pirazinamida/sangre , Rifampin/sangre , Tuberculosis/sangre , Adulto , Anciano , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos , Control de Calidad , Tuberculosis/diagnóstico
3.
Artículo en Inglés | MEDLINE | ID: mdl-32041715

RESUMEN

The aim of this work was to evaluate the pharmacokinetics of amikacin in Mexican patients with different renal functions receiving once-daily dosing regimens and the influence of clinical and demographical covariates that may influence the optimization of this antibiotic. A prospective study was performed in a total of 63 patients with at least one determination of amikacin plasma concentration. Population pharmacokinetic (PK) parameters were estimated by nonlinear mixed-effects modeling; validations were performed for dosing recommendation purposes based on PK/pharmacodynamic simulations. The concentration-versus-time data were best described by a one-compartment open model with proportional interindividual variability associated with amikacin clearance (CL) and volume of distribution (V); residual error followed a homoscedastic trend. Creatinine clearance (CLCR) and ideal body weight (IBW) demonstrated significant influence on amikacin CL and V, respectively. The final model [CL (liters/h) = 7.1 × (CLCR/130)0.84 and V (liters) = 20.3 × (IBW/68)2.9] showed a mean prediction error of 0.11 mg/liter (95% confidence interval, -3.34, 3.55) in the validation performed in a different group of patients with similar characteristics. There is a wide variability in amikacin PK parameters in Mexican patients. This leads to inadequate dosing regimens, especially in patients with augmented renal clearance (CLCR of >130 ml/min). Optimization based on the final population PK model in Mexican patients may be useful, since reliability and clinical applicability have been demonstrated in this study.


Asunto(s)
Amicacina/sangre , Amicacina/farmacocinética , Antibacterianos/farmacocinética , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Pruebas de Función Renal , Adolescente , Adulto , Anciano , Amicacina/uso terapéutico , Antibacterianos/uso terapéutico , Vías de Eliminación de Fármacos/fisiología , Femenino , Bacterias Gramnegativas/efectos de los fármacos , Humanos , Riñón/fisiología , Masculino , México , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
4.
Lupus ; 29(9): 1067-1077, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32539658

RESUMEN

BACKGROUND: Mycophenolic acid (MPA) is an effective oral immunosuppressive drug used to treat lupus nephritis (LN), which exhibits large pharmacokinetic variability. This study aimed to characterize MPA pharmacokinetic behaviour in Mexican LN patients and to develop a population pharmacokinetic model which identified factors that influence MPA pharmacokinetic variability. METHODS: Blood samples from LN patients treated with mycophenolate mofetil (MMF) were collected pre dose and up to six hours post dose. MPA concentrations were determined by a validated ultra-performance liquid chromatography tandem mass spectrometry technique. Patients were genotyped for polymorphisms in enzymes (UGT1A8, 1A9 and 2B7) and transporters (ABCC2 and SLCO1B3). The anthropometric, clinical, genetic and co-medication characteristics of each patient were considered as potential covariates to explain the variability. RESULTS: A total of 294 MPA concentrations from 40 LN patients were included in the development of the model. The data were analysed using NONMEM software and were best described by a two-compartment linear model. MPA CL, Vc, Vp, Ka and Q were 15.4 L/h, 22.86 L, 768 L, 1.28 h-1 and 20.3 L/h, respectively. Creatinine clearance and prednisone co-administration proved to have influence on clearance, while body weight influenced Vc. The model was internally validated, proving to be stable. MMF dosing guidelines were obtained through stochastic simulations performed with the final model. CONCLUSIONS: This is the first MPA population pharmacokinetic model to have found that co-administration of prednisone results in a considerable increase on clearance. Therefore, this and the other covariates should be taken into account when prescribing MMF in order to optimize the immunosuppressant therapy in patients with LN.


Asunto(s)
Inmunosupresores/farmacocinética , Nefritis Lúpica/tratamiento farmacológico , Modelos Biológicos , Ácido Micofenólico/farmacocinética , Prednisona/farmacocinética , Adolescente , Adulto , Quimioterapia Combinada , Femenino , Humanos , Inmunosupresores/administración & dosificación , Modelos Lineales , Nefritis Lúpica/sangre , Masculino , México , Persona de Mediana Edad , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Ácido Micofenólico/administración & dosificación , Prednisona/administración & dosificación , Programas Informáticos , Adulto Joven
5.
Ther Drug Monit ; 41(5): 648-656, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30939588

RESUMEN

BACKGROUND: Tuberculosis (TB) remains a critical infectious, contagious disease worldwide with high prevalence and mortality rate. The directly observed treatment short-course therapy includes rifampicin (RMP) and isoniazid (INH) for at least 6 months. The purposes of this scheme are to interrupt the transmissibility of the Mycobacterium tuberculosis complex and to avoid secondary complications. Low plasma concentrations of these anti-TB drugs have been associated with extended treatment duration, therapeutic failure, and relapse. The determination of anthropometric, genetic, and clinical variables that may affect plasma concentrations of RMP and INH might facilitate the detection of patients at increased risk of therapeutic failure. METHODS: A prospective observational study was performed in patients with TB diagnosis. A fixed-dose combined formulation was administered following clinical guidelines, and 12 venous blood samples were collected within 24 hours after dose for the quantification of plasma levels of RMP and INH by high-performance liquid chromatography-ultraviolet. The plasma concentrations versus time for each drug in each patient were assessed by a noncompartmental approach to obtain Cmax, and the area under the concentration-time curve to the last observation point (AUC0-24 h) was calculated by the linear trapezoidal rule. Genetic polymorphisms of the enzyme involved in INH metabolism (NAT2) and proteins involved in RMP transport (glycoprotein-P and OATP1B1) were determined. RESULTS: A total of 34 patients aged between 18 and 72 years with the diagnosis of TB were included in the current study. A multivariate analysis was performed to determine the anthropometric and genetic characteristics that modified the Cmax and AUC0-24 h of RMP and INH. Results indicated that RMP Cmax and AUC0-24 h were affected by sex, dose/weight, and single nucleotide polymorphism of MDR1. In addition, age, body mass index, and NAT2 acetylator genotype were shown to determine the Cmax and AUC0-24 h for INH. CONCLUSIONS: Anthropometric, genetic, and dosage characteristics of Mexican patients with TB are an important source of risk for subtherapeutic plasma concentrations of anti-TB drugs. Factors such as lower-than-recommended RMP dose, male patients with TB, and MDR1 3435 genotype, in addition to age group, body mass index, and INH acetylator phenotype based on NAT2 genotype, should be considered during treatment.


Asunto(s)
Antibióticos Antituberculosos/sangre , Antituberculosos/sangre , Isoniazida/sangre , Rifampin/sangre , Tuberculosis/sangre , Tuberculosis/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Adolescente , Adulto , Anciano , Antropometría/métodos , Antibióticos Antituberculosos/uso terapéutico , Antituberculosos/uso terapéutico , Arilamina N-Acetiltransferasa/genética , Cromatografía Líquida de Alta Presión/métodos , Femenino , Genotipo , Humanos , Isoniazida/uso terapéutico , Masculino , México , Persona de Mediana Edad , Análisis Multivariante , Polimorfismo de Nucleótido Simple/genética , Estudios Prospectivos , Rifampin/uso terapéutico , Tuberculosis/tratamiento farmacológico , Adulto Joven
6.
Biomed Chromatogr ; 33(12): e4681, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31419321

RESUMEN

To implement and validate an analytical method by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC MS/MS) to quantify mycophenolic acid (MPA) in kidney transplant patients. Quantification of MPA was performed in an ACQUITY UPLC H Class system coupled to a Xevo TQD detector and it was extracted from plasma samples by protein precipitation. The chromatographic separation was achieved through an ACQUITY HSS C18 SB column with 0.1% formic acid and acetonitrile (60:40 vol/vol) as mobile phase. The pharmacokinetic parameters were calculated by non-compartmental analysis of MPA plasma concentrations from 10 kidney transplant patients. The linear range for MPA quantification was 0.2-30 mg/L with a limit of detection of 0.07 mg/L; the mean extraction recovery was 99.99%. The mean intra- and inter-day variability were 2.98% and 3.4% with a percentage of deviation of 8.4% and 6.6%, respectively. Mean maximal concentration of 10 mg/L at 1.5 h, area under the concentration-time curve of 36.8 mg·h/L, elimination half-life of 3.9 h, clearance of 0.32 L/h/kg and volume of distribution of 1.65 L/kg were obtained from MPA pharmacokinetics profiles. A simple, fast and reliable UPLC-MS/MS method to quantify MPA in plasma was validated and has been applied for pharmacokinetic analysis in kidney transplant patients.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Trasplante de Riñón , Ácido Micofenólico/sangre , Ácido Micofenólico/farmacocinética , Espectrometría de Masas en Tándem/métodos , Adolescente , Adulto , Femenino , Humanos , Límite de Detección , Modelos Lineales , Masculino , Ácido Micofenólico/química , Reproducibilidad de los Resultados , Receptores de Trasplantes , Adulto Joven
7.
Arch Toxicol ; 92(2): 661-668, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29043425

RESUMEN

Human arylamine N-acetyltransferase 1 (NAT1) is responsible for the activation and elimination of xenobiotic compounds and carcinogens. Genetic polymorphisms in NAT1 modify both drug efficacy and toxicity. Previous studies have suggested a role for NAT1 in the development of several diseases. The aim of the present study was to evaluate NAT1 protein expression and in situ N-acetylation capacity in peripheral blood mononuclear cells (PBMC), as well as their possible associations with the expression of NAT1 transcript and NAT1 genotype. We report NAT1 protein, mRNA levels, and N-acetylation in situ activity for PBMC obtained from healthy donors. NAT1-specific protein expression was higher in CD3+ cells than other major immune cell subtypes (CD19 or CD56 cells). N-acetylation of pABA varied markedly among the PBMC of participants, but correlated very significantly with levels of NAT1 transcripts. NAT1*4 subjects showed significantly (p = 0.017) higher apparent pABA V max of 71.3 ± 3.7 versus the NAT1*14B subjects apparent V max of 58.5 ± 2.5 nmoles Ac-pABA/24 h/million cells. Levels of pABA N-acetylation activity at each concentration of substrate evaluated also significantly correlated with NAT1 mRNA levels for all samples (p < 0.0001). This highly significant correlation was maintained for samples with the NAT1*4 (p = 0.002) and NAT1*14B haplotypes (p = 0.0106). These results provide the first documentation that NAT1-catalyzed N-acetylation in PBMC is higher in T cell than in other immune cell subtypes and that individual variation in N-acetylation capacity is dependent upon NAT1 mRNA and NAT1 haplotype.


Asunto(s)
Ácido 4-Aminobenzoico/metabolismo , Arilamina N-Acetiltransferasa/metabolismo , Isoenzimas/metabolismo , Leucocitos Mononucleares/metabolismo , Acetilación , Adulto , Arilamina N-Acetiltransferasa/genética , Femenino , Genotipo , Haplotipos , Humanos , Isoenzimas/genética , Masculino , Polimorfismo de Nucleótido Simple , ARN Mensajero/genética , Linfocitos T/metabolismo , Adulto Joven
8.
Artículo en Inglés | MEDLINE | ID: mdl-28893792

RESUMEN

Pathophysiological changes involved in drug disposition in critically ill patients should be considered in order to optimize the dosing of vancomycin administered by continuous infusion, and certain strategies must be applied to reach therapeutic targets on the first day of treatment. The aim of this study was to develop a population pharmacokinetic model of vancomycin to determine clinical covariates, including mechanical ventilation, that influence the wide variability of this antimicrobial. Plasma vancomycin concentrations from 54 critically ill patients were analyzed simultaneously by a population pharmacokinetic approach. A nomogram for dosing recommendations was developed and was internally evaluated through stochastic simulations. The plasma vancomycin concentration-versus-time data were best described by a one-compartment open model with exponential interindividual variability associated with vancomycin clearance and the volume of distribution. Residual error followed a homoscedastic trend. Creatinine clearance and body weight significantly dropped the objective function value, showing their influence on vancomycin clearance and the volume of distribution, respectively. Characterization based on the presence of mechanical ventilation demonstrated a 20% decrease in vancomycin clearance. External validation (n = 18) was performed to evaluate the predictive ability of the model; median bias and precision values were 0.7 mg/liter (95% confidence interval [CI], -0.4, 1.7) and 5.9 mg/liter (95% CI, 5.4, 6.4), respectively. A population pharmacokinetic model was developed for the administration of vancomycin by continuous infusion to critically ill patients, demonstrating the influence of creatinine clearance and mechanical ventilation on vancomycin clearance, as well as the implications for targeting dosing rates to reach the therapeutic range (20 to 30 mg/liter).


Asunto(s)
Antibacterianos/farmacocinética , Antibacterianos/uso terapéutico , Creatinina/metabolismo , Enfermedad Crítica/terapia , Respiración Artificial , Vancomicina , Anciano , Monitoreo de Drogas , Femenino , Humanos , Infusiones Intravenosas , Unidades de Cuidados Intensivos , Masculino , Nomogramas , Vancomicina/sangre , Vancomicina/farmacocinética , Vancomicina/uso terapéutico
9.
J Antimicrob Chemother ; 71(2): 471-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26568565

RESUMEN

OBJECTIVES: The objectives of this study were to characterize the population pharmacokinetics of vancomycin in trauma patients and to propose dosing schemes to optimize therapy. PATIENTS AND METHODS: Trauma patients from Hospital Universitario Severo Ochoa (Spain) receiving intravenous vancomycin and routine therapeutic drug monitoring were included. Concentrations and time data were retrospectively collected, and population modelling was performed with NONMEM 7.2; internal and external validations were performed to probe the final model. Finally, several simulations were executed to propose dosing guidelines to reach expected vancomycin concentrations. RESULTS: A total of 118 trauma patients were included; the population was 45% males, with a mean age of 77 years (range 37-100 years) and a mean total body weight (TBW) of 72 kg (range 38-110 kg). The pharmacokinetics of vancomycin was best described by a two-compartment open model; creatinine clearance (CLCR) was related to vancomycin clearance (0.49 ± 0.04 L/h), being diminished by the presence of furosemide (0.34 ± 0.05 L/h). TBW influenced both the central volume of distribution (V1 = 0.74 ± 0.1 L/kg) and peripheral volume of distribution (V2 = 5.9 ± 2 L/kg), but patients with age >65 years showed a larger V1 (1.07 ± 0.1 L/kg). Bootstrapping was performed to internally validate the stability of the final model. External validation was developed using an alternate population of 40 patients with the same characteristics. The validated model was compared with population pharmacokinetic models previously published and showed better predictive performance for trauma patients than the current one. This final model allowed us to propose a new practical dose guideline to reach higher trough concentrations (15-20 mg/L) and AUC0-24/MIC ratios of more than 400 after 4 days of vancomycin treatment. CONCLUSIONS: A new population model was described for trauma patients to optimize vancomycin therapy, showing precise predictive performance to be applied for therapeutic drug monitoring and providing a new practical dose guideline that considers CLCR and concomitant administration of furosemide for these patients.


Asunto(s)
Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Infecciones Bacterianas/tratamiento farmacológico , Vancomicina/administración & dosificación , Vancomicina/farmacocinética , Heridas y Lesiones/complicaciones , Administración Intravenosa , Adulto , Anciano , Anciano de 80 o más Años , Bioestadística , Monitoreo de Drogas , Femenino , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Modelos Estadísticos , Estudios Retrospectivos , España
10.
Antimicrob Agents Chemother ; 59(1): 482-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25385111

RESUMEN

The aim of this study was to characterize and validate the population pharmacokinetics of gentamicin in infants and to determine the influences of clinically relevant covariates to explain the inter- and intraindividual variabilities associated with this drug. Infants receiving intravenous gentamicin and with routine therapeutic drug monitoring were consecutively enrolled in the study. Plasma concentration and time data were retrospectively collected from 208 infants (1 to 24 months old) of the Hospital Universitario Severo Ochoa (Spain), of whom 44% were males (mean age [± standard deviation], 5.8 ± 4.8 months; mean body weight, 6.4 ± 2.2 kg). Data analysis was performed with NONMEM 7.2. One- and two-compartment open models were analyzed to estimate the gentamicin population parameters and the influences of several covariates. External validation was carried out in another population of 55 infants. The behavior of gentamicin in infants exhibits two-compartment pharmacokinetics, with total body weight being the covariate that mainly influences central volume (Vc) and clearance (CL); this parameter was also related to creatinine clearance. Both parameters are age related and different from those reported for neonatal populations. On the basis of clinical presentation and diagnosis, a once-daily dosage regimen of 7 mg/kg of body weight every 24 h is proposed for intravenous gentamicin, followed by therapeutic drug monitoring in order to avoid toxicity and ensure efficacy with minimal blood sampling. Gentamicin pharmacokinetics and disposition were accurately characterized in this pediatric population (infants), with the parameters obtained being different from those reported for neonates and children. These differences should be considered in the dosing and therapeutic monitoring of this antibiotic.


Asunto(s)
Antibacterianos/farmacocinética , Biomarcadores Farmacológicos/sangre , Monitoreo de Drogas , Gentamicinas/farmacocinética , Antibacterianos/administración & dosificación , Antibacterianos/sangre , Peso Corporal , Preescolar , Creatinina/metabolismo , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Femenino , Gentamicinas/administración & dosificación , Gentamicinas/sangre , Humanos , Lactante , Recién Nacido , Masculino , Estudios Retrospectivos
11.
Ther Drug Monit ; 36(6): 746-51, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24784025

RESUMEN

BACKGROUND: Rifampicin (RMP) is the most effective first-line antituberculosis drug. One of the most critical aspects of using it in fixed-drug combination formulations is to ensure it reaches therapeutic levels in blood. The determination of the area under the concentration-time curve (AUC) and appropriate dose adjustment of this drug may contribute to optimization of therapy. Even when the maximal concentration (Cmax) of RMP also predicts its sterilizing effect, the time to reach it (Tmax) takes 40 minutes to 6 hours. The aim of this study was to develop a limited sampling strategy (LSS) for therapeutic drug monitoring assistance for RMP. METHODS: Full concentration-time curves were obtained from 58 patients with tuberculosis (TB) after the oral administration of RMP in fixed-drug combination formulation. A validated high-performance liquid chromatographic method was used. Pharmacokinetic parameters were estimated with a noncompartmental model. Generalized linear models were obtained by forward steps, and bootstrapping was performed to develop LSS to predict AUC curve from time 0 to the last measured at 24 hours postdose (AUC0-24). The predictive performance of the proposed models was assessed using RMP profiles from 25 other TB patients by comparing predicted and observed AUC0-24. RESULTS: The mean AUC0-24 in the current study was 91.46 ± 36.7 mg·h·L, and the most convenient sampling time points to predict it were 2, 4 and 12 hours postdose (slope [m] = 0.955 ± 0.06; r = 0.92). The mean prediction error was -0.355%, and the root mean square error was 5.6% in the validation group. Alternate LSSs are proposed with 2 of these sampling time points, which also provide good predictions when the 3 most convenient are not feasible. CONCLUSIONS: The AUC0-24 for RMP in TB patients can be predicted with acceptable precision through a 2- or 3-point sampling strategy, despite wide interindividual variability. These LSSs could be applied in clinical practice to optimize anti-TB therapy based on therapeutic drug monitoring.


Asunto(s)
Antibióticos Antituberculosos/sangre , Área Bajo la Curva , Rifampin/sangre , Adulto , Recolección de Muestras de Sangre/métodos , Recolección de Muestras de Sangre/normas , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Líquida de Alta Presión/normas , Femenino , Predicción , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
12.
Artículo en Inglés | MEDLINE | ID: mdl-38951408

RESUMEN

BACKGROUND AND OBJECTIVES: Piperacillin/tazobactam is extensively used off-label to treat late-onset neonatal sepsis, but safety and pharmacokinetic data in this population are limited. Additionally, the organic immaturity of the newborns contributes to a high piperacillin pharmacokinetic variability. This affects the clinical efficacy of the antibiotic treatment and increases the probability of developing drug resistance. This study aimed to evaluate the predictive performance of reported piperacillin population pharmacokinetic models for their application in a model-informed precision dosing strategy in preterm and term Mexican neonatal intensive care patients. METHODS: Published population pharmacokinetic models for piperacillin which included neonates in their study population were identified. From the reference models, structured models, population pharmacokinetic parameters, and interindividual and residual variability data were extracted to be replicated in pharmacokinetic software (NONMEM® version 7.4). For the clinical study, a sampling schedule was designed, and 2-3 blood samples of 250 µL were taken from neonates who met the inclusion criteria. Piperacillin plasma concentrations were determined by liquid chromatography/tandem mass spectrometry. The clinical treatment data were collected, and piperacillin plasma concentrations were estimated using reference pharmacokinetic models for an a priori or Bayesian approach. Statistical methods were used in terms of bias and precision to evaluate the differences between observed and estimated neonatal piperacillin plasma concentrations with the different approaches and to identify the pharmacokinetic model that best fits the neonatal data. RESULTS: A total of 70 plasma samples were collected from 25 neonatal patients, of which 15 were preterm neonates. The overall median value (range) postnatal age, gestational age, body weight, and serum creatinine at the sampling collecting day were 12 (3-26) days, 34.2 (26-41.1) weeks, 1.78 (0.08-3.90) Kg, 0.47 (0.20-0.90) mg/dL, respectively. Three population pharmacokinetic models for piperacillin in infants up to 2 months were identified, and their predictive performance in neonatal data was evaluated. No pharmacokinetic model was suitable for our population using an a priori approach. The model published by Cohen-Wolkowiez et al. in 2014 with a Bayesian approach showed the best performance of the pharmacokinetic models evaluated in our neonatal data. The procedure requires two blood samples (predose and postdose), and, when applied, it predicted 66.6% of the observations with a relative median absolute predicted error of less than 30%. CONCLUSIONS: The population pharmacokinetic model developed by Cohen-Wolkowiez et al. in 2014 demonstrated superior performance in predicting the plasma concentration of piperacillin in preterm and term Mexican neonatal intensive care patients. The Bayesian approach, including two different piperacillin plasma concentrations, was clinically acceptable regarding bias and precision. Its application for model-informed precision dosing can be an option to optimize the piperacillin dosage in our population.

13.
J Chromatogr Sci ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521966

RESUMEN

A sensitive and rapid ultra-performance liquid chromatography coupled with -tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to determine ceftibuten (CTB) and sulbactam (SUL) in human plasma. An ACQUITY UPLC HSS T3 C18 (2.1 × 100 mm), 1.8 µm column with gradient elution of water (0.1% formic acid) and acetonitrile was used for separation at a flow rate of 0.2 mL/min. This method involves a simple sample preparation with acetonitrile. The calibration curves of CTB and SUL in plasma showed good linearity over the concentration range of 0.50-25 µg/mL and with a correlation coefficient (r2) >0.99. This method was validated in terms of selectivity, linearity, precision, accuracy and stability. High precision was obtained with coefficients of variation <15%. Excellent recovery in the range of 90-104% was achieved for CTB and SUL was 86-110%. The method has the potential utility to support pharmacometric modeling in clinical practice and biopharmaceutic studies.

14.
Artículo en Inglés | MEDLINE | ID: mdl-37453389

RESUMEN

Tuberculosis (TB) is a high-burden infectious disease with high prevalence and mortality rates. The first-line anti-TB drugs include isoniazid (INH), rifampicin (RMP), pyrazinamide (PZA), and ethambutol (EMB). At present, the standard method of blood sampling for therapeutic drug monitoring (TDM) analysis is venipuncture. Dried blood spots (DBS) are a minimally invasive method for collecting small quantities of whole blood from fingertips. The aim of the current study was to develop an ultrahigh-performance liquid chromatography technique coupled to tandem mass spectrometry (UPLC-MS/MS) for simultaneous quantification of the first-line anti-TB drugs in human plasma and DBS as a sampling alternative. The separation and detection conditions were optimized to quantify INH, RMP, PZA, and EMB in both matrices in an ACQUITY UPLC H Class system coupled to a XEVO TQD detector. Chromatographic separation was performed through an Acquity HSS T3 column (2.1 × 100 mm, 1.8 µm) with 0.1% formic acid in water and acetonitrile as the mobile phase. The total run time was 7 min for both methods, with retention time in plasma of 0.85, 1.22, 3.16, and 4.04 min and 0.74, 0.87, 0.97, and 4.16 min for EMB, INH, PZA, and RMP in DBS, respectively. The bioanalytical methods developed were proved selective, linear, precise, and accurate (inter- and intra-assay); the matrix effect was demonstrated to be within the established limits. Short- and long-term stability, freeze-thaw cycles for plasma, and short-term stability for DBS were established. A total of 15 patients with 46 ± 17 (mean ± SD) years old were included, and anti-TB drug concentrations were quantified on plasma and DBS as proof of concept. Based on RMP and INH plasma concentrations (Cp), and Bayesian estimation of individual pharmacokinetic parameters, a dose adjustment was necessary for 93% of patients. The slopes of the correlation lines between plasma and DBS concentrations of RMP, EMB, INH, and PZA were 0.5321, 0.8125, 0.5680, and 0.6791, respectively. Finally, significant correlations (p < 0.05) were observed between DBS and plasma concentrations for RMP (r2 = 0.6961), EMB (r2 = 0.4369), INH (r2 = 0.8675) and PZA (r2 = 0.7363). A simple, fast, and reliable UPLC-MS/MS method was developed to quantify first-line anti-TB drugs in plasma and DBS, which provides an easy sampling and storage to be applied as a new strategy for TDM in patients with TB.


Asunto(s)
Antituberculosos , Tuberculosis , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Cromatografía Líquida de Alta Presión/métodos , Teorema de Bayes , Tuberculosis/tratamiento farmacológico , Isoniazida , Rifampin , Etambutol , Estándares de Referencia
15.
Eur J Pharm Sci ; 175: 106219, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35618200

RESUMEN

OBJECTIVE: The aim of this study was to characterize the population pharmacokinetics of amikacin in elderly patients by means of nonlinear mixed effects modelling and to propose initial dosing schemes to optimize therapy based on PK/PD targets. METHOD: A total of 137 elderly patients from 65 to 94 years receiving intravenous amikacin and routine therapeutic drug monitoring at Hospital Universitario Severo Ochoa were included. Concentration-time data and clinical information were retrospectively collected; initial doses of amikacin ranged from 5.7 to 22.5 mg/kg/day and each patient provided between 1 and 10 samples. RESULTS: Amikacin pharmacokinetics were best described by a two-compartment open model; creatinine clearance (CrCL) was related to drug clearance (2.75 L/h/80 mL/min) and it was augmented 28% when non-steroidal anti-inflammatory drugs were concomitantly administered. Body mass index (BMI) influenced the central volume of distribution (17.4 L/25 kg/m2). Relative absolute prediction error was reduced from 33.2% (base model) to 17.9% (final model) when predictive performance was evaluated with a different group of elderly patients. A nomogram for initial amikacin dosage was developed and evaluated based on stochastic simulations considering final model to achieve PK/PD targets (Cmax/MIC>10 and AUC/MIC>75) and to avoid toxic threshold (Cmin<2.5 mg/L). CONCLUSION: Initial dosing approach for amikacin was designed for elderly patients based on nonlinear mixed effects modeling to maximize the probability to attain efficacy and safety targets considering individual BMI and CrCL.


Asunto(s)
Amicacina , Antibacterianos , Administración Intravenosa , Anciano , Humanos , Tasa de Depuración Metabólica , Estudios Retrospectivos
16.
Artículo en Inglés | MEDLINE | ID: mdl-35193100

RESUMEN

An analytical method of ultra-high performance liquid chromatography coupled to tandem mass spectrometry detection was developed and validated for the simultaneous quantification in plasma of four selective serotonin reuptake inhibitor antidepressants: sertraline, escitalopram, paroxetine, fluoxetine, and its metabolite norfluoxetine. A simple protein precipitation was performed with acetonitrile containing 100 ng/mL of indomethacin, which was used as internal standard. Chromatographic separation was carried out on an Acquity BEH C18 column with isocratic elution of the mobile phase consisting of 5 mmol/L ammonium acetate with 0.1% formic acid (A) and acetonitrile (B) at a 60:40 proportion, respectively. The flow rate was 0.4 mL/min with a run time of 5 min. A positive electrospray ionization source was used for detection. The method was linear in a range of 5-800 ng/mL, with determination coefficients greater than 0.991. The accuracy ranged from 91% to 112% for intra-assay and from 89% to 112% for inter-assay. The variation coefficients ranged from 3.1% to 14.88% for intra-assay and from 3.60% to 14.74% for inter-assay precision. The method was successfully applied for the analysis of 73 samples from patients under treatment with these antidepressants; 36.9% of the samples had concentrations outside therapeutic ranges. This method can be applied for routine analysis in clinical practice, simplifying sample processing, reducing analysis time and consequently the costs associated with it.

17.
Basic Clin Pharmacol Toxicol ; 130(6): 644-654, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35365958

RESUMEN

Low-dose methotrexate can be challenging to treat rheumatoid arthritis due to side effects, lack of adherence and risk of medication errors. The aim of this study was to explore the safety and efficacy of low-dose methotrexate administered daily or weekly in patients with rheumatoid arthritis. Patients were randomized according to a total oral dose of 12.5 mg of methotrexate administered: (A) divided in 5 days/week and (B) once per week. Patients were assessed along 24 weeks after starting treatment. Polyglutamates of methotrexate were quantified by ultrahigh-performance liquid chromatography coupled to tandem mass spectrometer. Patients from groups A and B showed a good response to methotrexate treatment in 29% and 25.5%, respectively, and a global frequency of adverse events of 37%. Methotrexate polyglutamate 3 concentrations were higher in normal weight (body mass index 18.5-24.9 kg/m2 ) than in obese (body mass index 30 kg/m2 ) patients with a median (interquartile range) of 28 (17.95-45.15) and 10.35 (5.22-30.88) nM without differences between dosage groups. Daily dosage regimen represents a therapeutic alternative without compromising the efficacy and safety of methotrexate treatment and with similar adherence patterns than weekly dosage regimen; further, methotrexate polyglutamate 3 concentrations could be a useful tool for therapeutic drug monitoring purposes.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Antirreumáticos/efectos adversos , Artritis Reumatoide/tratamiento farmacológico , Monitoreo de Drogas , Humanos , Metotrexato/efectos adversos , Ácido Poliglutámico/uso terapéutico , Resultado del Tratamiento
18.
Eur J Hosp Pharm ; 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36126967

RESUMEN

OBJECTIVE: To evaluate the predictive performance of population pharmacokinetic models for piperacillin (PIP) available in the software MwPharm, TDMx and ID-ODs for initial dosing selection and therapeutic drug monitoring (TDM) purposes. METHODS: This is a prospective observational study in adult patients with severe infections receiving PIP treatment. Plasma concentrations were quantified by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. The differences between predicted and observed PIP concentrations were evaluated with Bland-Altman plots; additionally, the relative and absolute bias and precision of the models were determined. RESULTS: A total of 145 PIP plasma concentrations from 42 patients were analysed. For population prediction, MwPharm showed the best predictive performance with a mean relative difference of 34.68% (95% CI -197% to 266%) and a root mean square error (RMSE) of 60.42 µg/mL; meanwhile TDMx and ID-ODs under-predicted PIP concentrations. For individual prediction, the TDMx model was found to be the most precise with a mean relative difference of 7.61% (95% CI -57.63 to 72.86%), and RMSE of 17.86 µg/mL. CONCLUSION: Current software for TDM is a valuable tool, but it may also include different population pharmacokinetic models in patients with severe infections, and should be evaluated before performing a model-based TDM in clinical practice. Considering the heterogeneous characteristics of patients with severe infections, this study demonstrates the need for therapy personalisation for PIP to improve pharmacokinetic/pharmacodynamic target attainment.

19.
J Pharm Sci ; 110(10): 3520-3526, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34089712

RESUMEN

Meropenem pharmacokinetics in neonates exhibits large interindividual variability due to developmental changes occurring during the first month of life. The objective was to characterize meropenem pharmacokinetics through a population approach to determine effective dosing recommendations in neonates with severe nosocomial infections. Three blood samples from forty neonates were obtained once steady-state blood levels were achieved and plasma concentrations were determined with a validated chromatographic method. Data were used to develop and validate the one-compartment with first-order elimination population pharmacokinetic model obtained by non-linear mixed effect modeling. The final model was Clearance (L/h) = 2.23 × Creatinine Clearance (L/h) and Volume of distribution(L) = 6.06 × Body Surface Area(m2) × (1 + 0.60 if Fluticasone comedication). Doses should be adjusted based on said covariates to increase the likelihood of achieving therapeutic targets. This model explains 12.9% of the interindividual variability for meropenem clearance and 19.1% for volume of distribution. Stochastic simulations to establish initial dosing regimens to maximize the time above the MIC showed that the mean probabilities to achieve the PK/PD target (PTA) for microorganisms with a MIC of 2 and 8 µg/mL were 0.8 and 0.7 following i.v. bolus of 250 and 500 mg/m2/dose q8h, respectively. Meropenem extended 4h infusion would improve PTA in neonates with augmented creatinine clearance.


Asunto(s)
Infección Hospitalaria , Antibacterianos/uso terapéutico , Infección Hospitalaria/tratamiento farmacológico , Humanos , Recién Nacido , Meropenem , Pruebas de Sensibilidad Microbiana , Método de Montecarlo
20.
Pharmacol Res Perspect ; 9(5): e00864, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34523245

RESUMEN

Over the last few years, fluoxetine has been one of the most prescribed medications for the treatment of diverse psychiatric conditions in Mexico. Fluoxetine therapeutic effect is consequence of the joint action of the parent drug and its active metabolite, norfluoxetine. However, the clinical efficacy of fluoxetine, can be affected due to diverse factors, such as drug-drug interactions and the large interindividual variability in the pharmacokinetics of this drug. The aim of this study was to determine the factors associated with variability in plasma concentrations of fluoxetine and norfluoxetine and its association with the therapeutic response. Fluoxetine and norfluoxetine plasma concentrations were quantified by liquid chromatography in 81 Mexican patients with mental disorders; 25% of the patients had no medication adherence and 40% were below the reference range of fluoxetine plus norfluoxetine plasma concentrations. The results showed that concentrations can be affected by fluoxetine metabolism caused by CYP2D6 phenotype and the concomitant administration of olanzapine. Furthermore, CYP3A5 and CYP2C19 phenotype were associated with lower anxiety and depression control during treatment with fluoxetine. This study can be a starting point to elucidate the causes of fluoxetine variable response in Mexican patients with mental disorders, as well as to detect and support medication adherence.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Fluoxetina/farmacocinética , Trastornos Mentales/tratamiento farmacológico , Inhibidores Selectivos de la Recaptación de Serotonina/farmacocinética , Adulto , Antipsicóticos/efectos adversos , Ansiedad/tratamiento farmacológico , Ansiedad/psicología , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Depresión/tratamiento farmacológico , Depresión/psicología , Interacciones Farmacológicas , Femenino , Fluoxetina/análogos & derivados , Fluoxetina/sangre , Fluoxetina/metabolismo , Genotipo , Humanos , Masculino , Cumplimiento de la Medicación , Trastornos Mentales/psicología , México , Persona de Mediana Edad , Olanzapina/efectos adversos , Variantes Farmacogenómicas , Farmacocinética , Inhibidores Selectivos de la Recaptación de Serotonina/metabolismo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA