Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(46): E4929-35, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25368153

RESUMEN

Efficient and accurate localization of membrane proteins requires a complex cascade of interactions between protein machineries. This requirement is exemplified in the guided entry of tail-anchored (TA) protein (GET) pathway, where the central targeting factor Get3 must sequentially interact with three distinct binding partners to ensure the delivery of TA proteins to the endoplasmic reticulum (ER) membrane. To understand the molecular principles that provide the vectorial driving force of these interactions, we developed quantitative fluorescence assays to monitor Get3-effector interactions at each stage of targeting. We show that nucleotide and substrate generate differential gradients of interaction energies that drive the ordered interaction of Get3 with successive effectors. These data also provide more molecular details on how the targeting complex is captured and disassembled by the ER receptor and reveal a previously unidentified role for Get4/5 in recycling Get3 from the ER membrane at the end of the targeting reaction. These results provide general insights into how complex protein interaction cascades are coupled to energy inputs in biological systems.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Unión Competitiva , Proteínas Portadoras/metabolismo , Cisteína/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Espectrometría de Fluorescencia , Ubiquitina/metabolismo
2.
J Biol Chem ; 290(50): 30006-17, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26451041

RESUMEN

Tail-anchored (TA) proteins, defined as having a single transmembrane helix at their C terminus, are post-translationally targeted to the endoplasmic reticulum membrane by the guided entry of TA proteins (GET) pathway. In yeast, the handover of TA substrates is mediated by the heterotetrameric Get4/Get5 complex (Get4/5), which tethers the co-chaperone Sgt2 to the targeting factor, the Get3 ATPase. Binding of Get4/5 to Get3 is critical for efficient TA targeting; however, questions remain about the formation of the Get3·Get4/5 complex. Here we report crystal structures of a Get3·Get4/5 complex from Saccharomyces cerevisiae at 2.8 and 6.0 Å that reveal a novel interface between Get3 and Get4 dominated by electrostatic interactions. Kinetic and mutational analyses strongly suggest that these structures represent an on-pathway intermediate that rapidly assembles and then rearranges to the final Get3·Get4/5 complex. Furthermore, we provide evidence that the Get3·Get4/5 complex is dominated by a single Get4/5 heterotetramer bound to one monomer of a Get3 dimer, uncovering an intriguing asymmetry in the Get4/5 heterotetramer upon Get3 binding. Ultrafast diffusion-limited electrostatically driven Get3·Get4/5 association enables Get4/5 to rapidly sample and capture Get3 at different stages of the GET pathway.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido , Electricidad Estática , Especificidad por Sustrato
3.
EMBO J ; 31(3): 707-19, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22124326

RESUMEN

Efficient delivery of membrane proteins is a critical cellular process. The recently elucidated GET (Guided Entry of TA proteins) pathway is responsible for the targeted delivery of tail-anchored (TA) membrane proteins to the endoplasmic reticulum. The central player is the ATPase Get3, which in its free form exists as a dimer. Biochemical evidence suggests a role for a tetramer of Get3. Here, we present the first crystal structure of an archaeal Get3 homologue that exists as a tetramer and is capable of TA protein binding. The tetramer generates a hydrophobic chamber that we propose binds the TA protein. We use small-angle X-ray scattering to provide the first structural information of a fungal Get3/TA protein complex showing that the overall molecular envelope is consistent with the archaeal tetramer structure. Moreover, we show that this fungal tetramer complex is capable of TA insertion. This allows us to suggest a model where a tetramer of Get3 sequesters a TA protein during targeting to the membrane.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Archaea/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Archaea/química , Factores de Intercambio de Guanina Nucleótido/química , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química
4.
Proc Natl Acad Sci U S A ; 110(19): 7666-71, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23610396

RESUMEN

The localization of tail-anchored (TA) proteins, whose transmembrane domain resides at the extreme C terminus, presents major challenges to cellular protein targeting machineries. In eukaryotic cells, the highly conserved ATPase, guided entry of tail-anchored protein 3 (Get3), coordinates the delivery of TA proteins to the endoplasmic reticulum. How Get3 uses its ATPase cycle to drive this fundamental process remains unclear. Here, we establish a quantitative framework for the Get3 ATPase cycle and show that ATP specifically induces multiple conformational changes in Get3 that culminate in its ATPase activation through tetramerization. Further, upstream and downstream components actively regulate the Get3 ATPase cycle to ensure the precise timing of ATP hydrolysis in the pathway: the Get4/5 TA loading complex locks Get3 in the ATP-bound state and primes it for TA protein capture, whereas the TA substrate induces tetramerization of Get3 and activates its ATPase reaction 100-fold. Our results establish a precise model for how Get3 harnesses the energy from ATP to drive the membrane localization of TA proteins and illustrate how dimerization-activated nucleotide hydrolases regulate diverse cellular processes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Sitio Alostérico , Membrana Celular/metabolismo , Dimerización , Activación Enzimática , Regulación Fúngica de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Hidrólisis , Mutagénesis , Conformación Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Eukaryot Cell ; 7(9): 1518-29, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18586952

RESUMEN

Toxoplasma gondii, which causes toxoplasmic encephalitis and birth defects, contains an essential chloroplast-related organelle to which proteins are trafficked via the secretory system. This organelle, the apicoplast, is bounded by multiple membranes. In this report we identify a novel apicoplast-associated thioredoxin family protein, ATrx1, which is predominantly soluble or peripherally associated with membranes, and which localizes primarily to the outer compartments of the organelle. As such, it represents the first protein to be identified as residing in the apicoplast intermembrane spaces. ATrx1 lacks the apicoplast targeting sequences typical of luminal proteins. However, sequences near the N terminus are required for proper targeting of ATrx1, which is proteolytically processed from a larger precursor to multiple smaller forms. This protein reveals a population of vesicles, hitherto unrecognized as being highly abundant in the cell, which may serve to transport proteins to the apicoplast.


Asunto(s)
Orgánulos/metabolismo , Proteínas Protozoarias/metabolismo , Tiorredoxinas/metabolismo , Toxoplasma/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Familia de Multigenes , Orgánulos/química , Orgánulos/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Tiorredoxinas/química , Tiorredoxinas/genética , Toxoplasma/química , Toxoplasma/genética , Vesículas Transportadoras/química , Vesículas Transportadoras/genética
6.
Infect Immun ; 76(11): 4865-75, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18765740

RESUMEN

Toxoplasma gondii is an obligate intracellular parasite that resides in the cytoplasm of its host in a unique membrane-bound vacuole known as the parasitophorous vacuole (PV). The membrane surrounding the parasite is remodeled by the dense granules, secretory organelles that release an array of proteins into the vacuole and to the PV membrane (PVM). Only a small portion of the protein constituents of the dense granules have been identified, and little is known regarding their roles in infection or how they are trafficked within the infected host cell. In this report, we identify a novel secreted dense granule protein, GRA14, and show that it is targeted to membranous structures within the vacuole known as the intravacuolar network and to the vacuolar membrane surrounding the parasite. We disrupted GRA14 and exploited the knockout strain to show that GRA14 can be transferred between vacuoles in a coinfection experiment with wild-type parasites. We also show that GRA14 has an unexpected topology in the PVM with its C terminus facing the host cytoplasm and its N terminus facing the vacuolar lumen. These findings have important implications both for the trafficking of GRA proteins to their ultimate destinations and for expectations of functional domains of GRA proteins at the host-parasite interface.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasmosis/metabolismo , Vacuolas/química , Animales , Secuencia de Bases , Western Blotting , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/parasitología , Fibroblastos/parasitología , Humanos , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Transporte de Proteínas/fisiología , Toxoplasma/metabolismo , Toxoplasma/patogenicidad , Vacuolas/parasitología , Vacuolas/ultraestructura
7.
ACS Nano ; 11(1): 872-881, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28029784

RESUMEN

Vault nanoparticles represent promising vehicles for drug and probe delivery. Innately found within human cells, vaults are stable, biocompatible nanocapsules possessing an internal volume that can encapsulate hundreds to thousands of molecules. They can also be targeted. Unlike most nanoparticles, vaults are nonimmunogenic and monodispersed and can be rapidly produced in insect cells. Efforts to create vaults with modified properties have been, to date, almost entirely limited to recombinant bioengineering approaches. Here we report a systematic chemical study of covalent vault modifications, directed at tuning vault properties for research and clinical applications, such as imaging, targeted delivery, and enhanced cellular uptake. As supra-macromolecular structures, vaults contain thousands of derivatizable amino acid side chains. This study is focused on establishing the comparative selectivity and efficiency of chemically modifying vault lysine and cysteine residues, using Michael additions, nucleophilic substitutions, and disulfide exchange reactions. We also report a strategy that converts the more abundant vault lysine residues to readily functionalizable thiol terminated side chains through treatment with 2-iminothiolane (Traut's reagent). These studies provide a method to doubly modify vaults with cell penetrating peptides and imaging agents, allowing for in vitro studies on their enhanced uptake into cells.


Asunto(s)
Sistemas de Liberación de Medicamentos , Colorantes Fluorescentes/química , Nanopartículas/química , Imagen Óptica , Partículas Ribonucleoproteicas en Bóveda/química , Animales , Células CHO , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cricetulus , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Células HeLa , Humanos , Ratones , Microscopía Confocal , Estructura Molecular , Células RAW 264.7 , Relación Estructura-Actividad , Partículas Ribonucleoproteicas en Bóveda/síntesis química , Partículas Ribonucleoproteicas en Bóveda/farmacología
8.
Nat Struct Mol Biol ; 21(5): 437-42, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24727835

RESUMEN

Correct localization of membrane proteins is essential to all cells. Chaperone cascades coordinate the capture and handover of substrate proteins from the ribosomes to the target membranes, yet the mechanistic and structural details of these processes remain unclear. Here we investigate the conserved GET pathway, in which the Get4-Get5 complex mediates the handover of tail-anchor (TA) substrates from the cochaperone Sgt2 to the Get3 ATPase, the central targeting factor. We present a crystal structure of a yeast Get3-Get4-Get5 complex in an ATP-bound state and show how Get4 primes Get3 by promoting the optimal configuration for substrate capture. Structure-guided biochemical analyses demonstrate that Get4-mediated regulation of ATP hydrolysis by Get3 is essential to efficient TA-protein targeting. Analogous regulation of other chaperones or targeting factors could provide a general mechanism for ensuring effective substrate capture during protein biogenesis.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Proteínas Portadoras/química , Factores de Intercambio de Guanina Nucleótido/química , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Cristalografía por Rayos X , Regulación Fúngica de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas de la Membrana , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/genética
9.
Structure ; 22(3): 367-77, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24508339

RESUMEN

Mitochondrial fission requires recruitment of dynamin-related protein 1 (Drp1) to the mitochondrial surface and activation of its GTP-dependent scission function. The Drp1 receptors MiD49 and MiD51 recruit Drp1 to facilitate mitochondrial fission, but their mechanism of action is poorly understood. Using X-ray crystallography, we demonstrate that MiD51 contains a nucleotidyl transferase domain that binds ADP with high affinity. MiD51 recruits Drp1 via a surface loop that functions independently of ADP binding. However, in the absence of nucleotide binding, the recruited Drp1 cannot be activated for fission. Purified MiD51 strongly inhibits Drp1 assembly and GTP hydrolysis in the absence of ADP. Addition of ADP relieves this inhibition and promotes Drp1 assembly into spirals with enhanced GTP hydrolysis. Our results reveal ADP as an essential cofactor for MiD51 during mitochondrial fission.


Asunto(s)
Adenosina Difosfato/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Citosol/metabolismo , Dinaminas/química , Dinaminas/genética , Dinaminas/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Proteínas Mitocondriales/genética , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/genética
10.
PLoS One ; 7(9): e43463, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984429

RESUMEN

Photoreceptor terminals contain post-synaptic density (PSD) proteins e.g., PSD-95/PSD-93, but their role at photoreceptor synapses is not known. PSDs are generally restricted to post-synaptic boutons in central neurons and form scaffolding with multiple proteins that have structural and functional roles in neuronal signaling. The Shank family of proteins (Shank 1-3) functions as putative anchoring proteins for PSDs and is involved in the organization of cytoskeletal/signaling complexes in neurons. Specifically, Shank 1 is restricted to neurons and interacts with both receptors and signaling molecules at central neurons to regulate plasticity. However, it is not known whether Shank 1 is expressed at photoreceptor terminals. In this study we have investigated Shank 1A localization in the outer retina at photoreceptor terminals. We find that Shank 1A is expressed presynaptically in cone pedicles, but not rod spherules, and it is absent from mice in which the Shank 1 gene is deleted. Shank 1A co-localizes with PSD-95, peanut agglutinin, a marker of cone terminals, and glycogen phosphorylase, a cone specific marker. These findings provide convincing evidence for Shank 1A expression in both the inner and outer plexiform layers, and indicate a potential role for PSD-95/Shank 1 complexes at cone synapses in the outer retina.


Asunto(s)
Mamíferos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Animales , Homólogo 4 de la Proteína Discs Large , Eliminación de Gen , Guanilato-Quinasas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Especificidad de Órganos , Aglutinina de Mani/metabolismo , Unión Proteica , Células Fotorreceptoras Retinianas Conos/citología , Sinapsis/metabolismo , Aglutininas del Germen de Trigo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA