Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 68(8): e0165923, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39028193

RESUMEN

Artemisinin-based combination therapies (ACTs) were introduced as the standard of care for uncomplicated malaria in Africa almost two decades ago. Recent studies in East Africa have reported a gradual increase in kelch13 (k13) mutant parasites associated with reduced artesunate efficacy. As part of the Community Access to Rectal Artesunate for Malaria project, we collected blood samples from 697 children with signs of severe malaria in northern Uganda between 2018 and 2020, before and after the introduction of rectal artesunate (RAS) in 2019. K13 polymorphisms were assessed, and parasite editing and phenotyping were performed to assess the impact of mutations on parasite resistance. Whole-genome sequencing was performed, and haplotype networks were constructed to determine the geographic origin of k13 mutations. Of the 697 children, 540 were positive for Plasmodium falciparum malaria by PCR and were treated with either RAS or injectable artesunate monotherapy followed in most cases by ACT. The most common k13 mutation was C469Y (6.7%), which was detected more frequently in samples collected after RAS introduction. Genome editing confirmed reduced in vitro susceptibility to artemisinin in C469Y-harboring parasites compared to wild-type controls (P < 0.001). The haplotypic network showed that flanking regions of the C469Y mutation shared the same African genetic background, suggesting a single and indigenous origin of the mutation. Our data provide evidence of selection for the artemisinin-resistant C469Y mutation. The realistic threat of multiresistant parasites emerging in Africa should encourage careful monitoring of the efficacy of artemisinin derivatives and strict adherence to ACT treatment regimens.


Asunto(s)
Antimaláricos , Artemisininas , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Uganda , Artemisininas/uso terapéutico , Artemisininas/farmacología , Humanos , Antimaláricos/uso terapéutico , Antimaláricos/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Resistencia a Medicamentos/genética , Proteínas Protozoarias/genética , Mutación , Artesunato/uso terapéutico , Artesunato/farmacología , Preescolar , Niño , Masculino , Femenino
2.
ACS Infect Dis ; 6(7): 1532-1547, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32267151

RESUMEN

Three novel tracers designed as fluorescent surrogates of artemisinin-derived antimalarial drugs (i.e., dihydroartemisinin, artemether, arteether, and artemisone) were synthesized from dihydroartemisinin. One of these tracers, corresponding to a dihydroartemisinin/artemether/arteether mimic, showed a combination of excellent physicochemical and biological properties such as hydrolytic stability, high inhibitory potency against blood-stage parasites, similar ring-stage survival assay values than the clinical antimalarials, high cytopermeability and specific labeling of live P. falciparum cells, alkylation of heme, as well as specific covalent labeling of drug-sensitive and drug-resistant P. falciparum proteomes at physiological concentrations, consistent with a multitarget action of the drugs. Our study demonstrates that probes containing the complete structural core of clinical artemisinin derivatives can be stable in biochemical and cellular settings, and recapitulate the complex mechanisms of these frontline, yet threatened, antimalarial drugs.


Asunto(s)
Antimaláricos , Artemisininas , Antimaláricos/farmacología , Arteméter , Artemisininas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA