RESUMEN
Currently, the only thermoelectric (TE) materials commercially available at room temperature are those based on bismuth telluride. However, their widespread application is limited due to their inferior thermoelectric and mechanical properties. In this study, a strategy of growing a rigid second phase of MoSe2 is employed, in situ within the matrix phase to achieve n-type bismuth telluride-based materials with exceptional mechanical and thermoelectric properties. The in situ grown second phase contributes to both the electronic and lattice thermal conductivities. This is primarily attributed to the strong energy filtering effect, as the second phase forms a semi-common lattice interfacial structure with the matrix phase during growth. Furthermore, for composites containing 2 wt% MoSe2, a maximum zT value of 1.24 at 373 K can be achieved. On this basis, 8-pair TE module is fabricated and 1-pair TE module is optimized using a homemade p-type material. The optimized 1-pair TE module generates a maximum output power of 13.6 µW, which is twice that of the 8-pair TE module and four times more than the 8-pair TE module fabricated by commercial material. This work facilitates the development of the TE module by presenting a novel approach to obtaining bismuth telluride-based thermoelectric materials with superior thermoelectric and mechanical properties.
RESUMEN
BACKGROUND: Antiviral drugs show significant efficacy in non-severe COVID-19 cases, yet there remains a subset of moderate COVID-19 patients whose pneumonia continues to progress post a complete course of treatment. Plasma-activated water (PAW) possesses anti-SARS-CoV-2 properties. To explore the potential of PAW in improving pneumonia in COVID-19 patients following antiviral treatment failure, we conducted this study. METHODS: This was a randomized, controlled trial. Moderate COVID-19 patients with antiviral treatment failure were randomly assigned to the experimental group or the control group. They inhaled nebulized PAW or saline respectively. This was done twice daily for four consecutive days. We assessed improvement in chest CT on day 5, the rate of symptom resolution within 10 days, and safety. RESULTS: A total of 23 participants were included, with 11 receiving PAW and 12 receiving saline. The baseline characteristics of both groups were comparable. The experimental group showed a higher improvement rate in chest CT on day 5 (81.8% vs. 33.3%, p = 0.036). The cumulative disappearance rate of cough within 10 days was higher in the experimental group. Within 28 days, 4 patients in each group progressed to severe illness, and no patients died. No adverse reactions were reported from inhaling nebulized PAW. CONCLUSION: This pilot trial preliminarily confirmed that nebulized inhalation of PAW can alleviate pneumonia in moderate COVID-19 patients with antiviral treatment failure, with no adverse reactions observed. This still needs to be verified by large-scale studies. TRIAL REGISTRATION: Chinese Clinical Trial Registry; No.: ChiCTR2300078706 (retrospectively registered, 12/15/2023); URL: www.chictr.org.cn .
Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Nebulizadores y Vaporizadores , SARS-CoV-2 , Insuficiencia del Tratamiento , Humanos , Masculino , Femenino , Persona de Mediana Edad , Proyectos Piloto , Administración por Inhalación , Antivirales/uso terapéutico , Antivirales/administración & dosificación , Anciano , Agua , Adulto , Resultado del TratamientoRESUMEN
Semiconductor materials with wide bandgaps are extensively employed for gas detection due to their advantages of low cost, high sensitivity, fast speed, excellent stability, and distinctive selectivity. Previous studies have reported on different kinds of semiconductor materials and their complex synthesis procedures. However, the research progress on gas-sensitive mechanisms seriously lags behind the performance improvement. The research route of the gas-sensing mechanism is not clear, resulting in an unclear development direction of novel sensitive materials. This review aims to summarize existing approaches and their progress on the interpretation of gas-sensing mechanisms in semiconductors, such as the calculations based on density functional theory, semiconductor physics, and in situ experiments. Ultimately, a reasonable route for the mechanism investigation has been proposed. It guides the development direction of novel materials and reduces the cost of screening highly selective materials. Overall, this review can provide helpful guidance concerning the gas-sensitive mechanism for scholars.
RESUMEN
SF6 gas is widely used on many occasions especially in the power equipment, but it has been restricted since Kyoto Protocol as the strongest greenhouse gas. To reduce the SF6 emission, several methods are now used such the recycling & purification and the SF6 degradation. Considering the huge market of SF6 and the recent demand in the field of power equipment, it is necessary to explore new ways to thoroughly destroy SF6. This work brought out the idea to degrade retired SF6 by thermal plasma. A simplified kinetic model was established to predict the feasibility of this idea as well as the degradation products of SF6, and then the prototype of SF6 degradation by thermal plasma was built and tested. In thermal plasma, SF6 gradually decomposed into atoms, and then H2 was added to capture the released F atoms to generate HF and also prevent the association reactions of SF6. In order to achieve the desired degradation effect, the reaction temperature and the mixing ratio of H2 should be sufficiently high. However, excessive H2 could generate the H2S, and excessive discharge power could decrease the energy yield. When the flow rate of SF6/H2 was set as 8/30 L/min and the discharge current was set as 100A, the destruction removal efficiency (DRE) of SF6 was 99.0% and the energy yield was 206 g/kWh. This work also discusses how to further treat the by-products such as HF and S from this prototype effectively.
RESUMEN
SARS-CoV-2 is a highly contagious virus and is causing a global pandemic. SARS-CoV-2 infection depends on the recognition of and binding to the cellular receptor human angiotensin-converting enzyme 2 (hACE2) through the receptor-binding domain (RBD) of the spike protein, and disruption of this process can effectively inhibit SARS-CoV-2 invasion. Plasma-activated water efficiently inactivates bacteria and bacteriophages by causing damage to biological macromolecules, but its effect on coronavirus has not been reported. In this study, pseudoviruses with the SARS-CoV-2 S protein were used as a model, and plasma-activated water (PAW) effectively inhibited pseudovirus infection through S protein inactivation. The RBD was used to study the molecular details, and the RBD binding activity was inactivated by plasma-activated water through the RBD modification. The short-lived reactive species in the PAW, such as ONOO-, played crucial roles in this inactivation. Plasma-activated water after room-temperature storage of 30 days remained capable of significantly reducing the RBD binding with hACE2. Together, our findings provide evidence of a potent disinfection strategy to combat the epidemic caused by SARS-CoV-2.
RESUMEN
Carbon dioxide (CO2) is a promising alternative to sulfur hexafluoride for high-voltage circuit breaker applications. It is important to have a detailed understanding of CO2 arc properties. In this paper, radial temperature distribution of the free burning direct current arc in pure CO2 was investigated. Optical emission spectrometry was applied under different pressures (0.5 atm, 1 atm, and 1.5 atm) and at different axial positions (1 mm, 2 mm, 3 mm above the cathode). Assuming local thermodynamic equilibrium, the Fowler-Milne method was adopted for O I 715.67 nm and O I 777.19 nm in the periphery of the arc, and the single-line method was adopted for C II 657.81 nm near the center of the arc. Radial temperature profiles obtained by these two methods were combined at the position where normal temperature was assigned. The results indicate that near the center of the arc, higher pressure would lead to lower temperature; as the distance from the cathode to the position measured increases, the maximum temperature in the arc center would decrease. In addition, the temperature would decrease more sharply toward the periphery if the central temperature of the arc is higher.
RESUMEN
Partial discharge (PD) is not only an important symptom for monitoring the imperfections in the insulation system of a gas-insulated switchgear (GIS), but also the factor that accelerates the degradation. At present, monitoring ultra-high-frequency (UHF) signals induced by PDs is regarded as one of the most effective approaches for assessing the insulation severity and classifying the PDs. Therefore, in this paper, a deep learning-based PD classification algorithm is proposed and realized with a multi-column convolutional neural network (CNN) that incorporates UHF spectra of multiple resolutions. First, three subnetworks, as characterized by their specified designed temporal filters, frequency filters, and texture filters, are organized and then intergraded by a fully-connected neural network. Then, a long short-term memory (LSTM) network is utilized for fusing the embedded multi-sensor information. Furthermore, to alleviate the risk of overfitting, a transfer learning approach inspired by manifold learning is also present for model training. To demonstrate, 13 modes of defects considering both the defect types and their relative positions were well designed for a simulated GIS tank. A detailed analysis of the performance reveals the clear superiority of the proposed method, compared to18 typical baselines. Several advanced visualization techniques are also implemented to explore the possible qualitative interpretations of the learned features. Finally, a unified framework based on matrix projection is discussed to provide a possible explanation for the effectiveness of the architecture.
RESUMEN
The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space (H, L, and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved.
RESUMEN
Contact erosion is one of the most crucial factors affecting the electrical service lifetime of high-voltage circuit breakers (HVCBs). On-line monitoring the contacts' erosion degree is increasingly in demand for the sake of condition based maintenance to guarantee the functional operation of HVCBs. A spectroscopic monitoring system has been designed based upon a commercial 245 kV/40 kA S F 6 live tank circuit breaker with copper-tungsten (28 wt % and 72 wt %) arcing contacts at atmospheric S F 6 pressure. Three optical-fibre based sensors are used to capture the time-resolved spectra of arcs. A novel approach using chromatic methods to process the time-resolved spectral signal has been proposed. The processed chromatic parameters have been interpreted to show that the time variation of spectral emission from the contact material and quenching gas are closely correlated to the mass loss and surface degradation of the plug arcing contact. The feasibility of applying this method to online monitoring of contact erosion is indicated.
RESUMEN
For practical industrial applications, enhancing the longevity and the reliability of thermoelectric modules (TEMs) is equally as crucial as improving their conversion efficiency. This study proposes a strategy for extending the lifespan and introduces the quality evaluation criteria for the most extensively used commercial bismuth telluride TEM. By varying the soldering pressure during module assembly, its impact on the quality of the module's internal interfacial connections was investigated, via analyzing its contact resistivity, shear modulus, and antifatigue ability through thermal cycling tests. The findings reveal that increasing the soldering pressure leads to a slight reduction in interfacial contact resistivity and has no significant effect on the shear modulus but notably enhances the module's antifatigue ability during thermal cycling tests. According to the SEM results, it can be evidently deduced that the aforementioned phenomena are directly correlated with the size and quantity of voids distributed in the solder layer, which is regarded as the origin of antifatigue ability. Thus, it can be inferred that augmenting the soldering pressure represents an effective approach to prolonging the lifespan of TEMs assembled by using the soldering method. Furthermore, the existence of voids within the solder layer can serve as a criterion for an initial assessment of module longevity. This study provides a reference for both the industrial assembly and lifespan evaluation of commercial bismuth telluride TEMs.
RESUMEN
The disinfection of fabrics is crucial in preventing the spread of infectious diseases caused by pathogenic microorganisms to maintain public health. A previous study proved that plasma-activated nebulized mist (PANM) could effectively inactivate microorganisms both in aerosol and attached to the surface. In this study, the PANM driven by different plasma gases were employed to inactivate microorganisms on diverse fabrics. The PANM could efficiently inactivate a variety of microorganisms, including bacteria, fungi, and viruses, contaminating different fabrics, and even across covering layers of different fabrics. The mites residing on the cotton fabrics both uncovered and covered with various types of fabrics were also effectively inactivated by the PANM. After 30 times repeated treatments of the PANM, notable changes were observed in the color of several fabrics while the structural integrity and mechanical strength of the fabrics were unaffected and maintained similarly to the untreated fabrics with slight changes in elemental composition. Additionally, only trace amounts of nitrate remained in the fabrics after the PANM treatment. Therefore, the PANM treatment supplied an efficient, broad-spectrum, and environmentally friendly strategy for industrial and household disinfection of fabrics.
Asunto(s)
Gases em Plasma , Textiles , Gases em Plasma/farmacología , Animales , Desinfección/métodos , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Nebulizadores y Vaporizadores , Virus/efectos de los fármacosRESUMEN
Cold atmospheric plasma (CAP) is a fledgling therapeutic technique for psoriasis treatment with noninvasiveness, but clinical adoption has been stifled by the insufficient production and delivery of plasma-generated reactive oxygen and nitrogen species (RONS). Herein, patches of air-discharge plasma-activated ice microneedles (PA-IMNs) loaded with multiple RONS are designed for local transdermal delivery to treat psoriasis as an alternative to direct CAP irradiation treatment. By mixing two RONS generated by the air-discharge plasma in the NOx mode and O3 mode, abundant high-valence RONS are produced and incorporated into PA-IMNs via complex gas-gas and gas-liquid reactions. The PA-IMNs abrogate keratinocyte overproliferation by inducing reactive oxygen species (ROS)-mediated loss of the mitochondrial membrane potential and apoptosis of keratinocytes. The in vivo transdermal treatment confirms that PA-IMNs produce significant anti-inflammatory and therapeutic actions for imiquimod (IMQ)-induced psoriasis-like dermatitis in mice by inhibiting the release of associated inflammatory factors while showing no evident systemic toxicity. Therefore, PA-IMNs have a large potential in transdermal delivery platforms as they overcome the limitations of using CAP directly in the clinical treatment of psoriasis.
Asunto(s)
Administración Cutánea , Agujas , Gases em Plasma , Psoriasis , Especies Reactivas de Oxígeno , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Animales , Gases em Plasma/química , Ratones , Humanos , Especies Reactivas de Oxígeno/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Imiquimod/toxicidad , Hielo , Parche Transdérmico , Apoptosis/efectos de los fármacos , Ratones Endogámicos BALB CRESUMEN
As a result of the complexity and difficulty of the lifetime assessment of the thermoelectric (TE) module, the related research is still immature. In this work, to predict the lifetime of the Bi2Te3-based TE module from the perspective of cyclic thermal stress leading to interface cracking, the viscoplastic behavior of the solder layer is first described by the Anand material ontology model, and then the sprouting and expansion of interface cracking of the module are simulated by combining the Darveaux model and the viscoplastic dissipation energy accumulated during the thermal stress cyclic loading. After that, the complete lifetime prediction model of the TE module is established on the basis of the thermal cycling experiments and the finite element simulation calculation data, which can simply and efficiently predict the cycle number of the module resistance rise and its rise rate. The prediction deviations are 6.1 and 6.7%, respectively, verifying the feasibility of the model. The work in this paper can provide a reference for the life evaluation of TE modules.
RESUMEN
Semiconductor gas sensors were confirmed to perform high linearity and a stable baseline under alternating current (AC) impedance measurements. However, a procedure to determine the optimal parameters of AC impedance measurements is still lacking. Taking the detection of SF6 decomposition gas as an example, this work has established a model of semiconductor gas sensors under AC impedance measurement. Employing four types of sensors to detect three gases (H2S, SO2, and CO), the effectiveness of the optimization method has been validated, as well. With the high linearity and stable baseline obtained from AC impedance measurement, it enables rapid correction of temperature drift within environmental temperatures ranging from 10 to 30 °C. Overall, the proposed method can provide a novel approach to inhibit the drift failure of semiconductor gas sensors.
Asunto(s)
Impedancia Eléctrica , Gases , Semiconductores , Gases/análisis , Gases/química , Dióxido de Azufre/análisis , Temperatura , Hexafluoruro de Azufre/análisisRESUMEN
Allergic contact dermatitis (ACD) is a common inflammatory skin disease that accounts for approximately 20% of all occupational skin diseases. As an adverse and recurrent inflammatory dermatological agent, ACD shows insufficient response to current therapies largely owing to abnormal inflammatory activation and accompanying bacterial infection in lesions. Cold atmospheric plasma is a noninvasive fledgling reactive oxygen and nitrogen species (RONS)-based therapeutic technique for ACD treatment; however, its clinical adoption has been hindered due to the risk of electrical burns and insufficient delivery of the plasma-generated RONS. To address these limitations, we constructed plasma-activated AVC (PA-AVC) hydrogels loaded with plasma-generated RONS for ACD treatment as an alternative to the common direct plasma irradiation treatment. The proposed PA-AVC hydrogels were produced on a biodegradable acryloyldimethylammonium taurate/VP copolymer (AVC) with the aid of a novel air discharge plasma without the involvement of any catalyst. In vitro data showed that abundant RONS were produced and incorporated into the PA-AVC hydrogels via complex gas-liquid reactions between the air discharge plasma and hydrosolvent; additionally, the PA-AVC hydrogels exhibited excellent storage, slow release and transdermal delivery of RONS as well as good antibacterial effects. Moreover, in vivo experiments demonstrated that PA-AVC hydrogels effectively alleviated the ACD symptoms, such as skin redness and swelling, reduced epidermal thickening and inhibited mast cell infiltration and IL-9, TNF-α, and TSLP expression with no evident systemic toxicity. Our results revealed that long-acting plasma-activated AVC hydrogels could be effective therapeutic agents for local ACD treatment.
RESUMEN
Malignant melanoma is the most lethal form of skin cancer. As a promising anti-cancer agent, plasma-activated water (PAW) rich in reactive oxygen and nitrogen species (RONS) has shown significant potential for melanoma treatment. However, rapid decay of RONS and inefficient delivery of PAW in conventional injection methods limit its practical applications. To address this issue, here we report a new approach for the production of plasma-activated cryo-microneedles (PA-CMNs) patches using custom-designed plasma devices and processes. Our innovation is to incorporate PAW into the PA-CMNs that are fabricated using a fast cryogenic micro-molding method. It is demonstrated that PA-CMNs can be easily inserted into skin to release RONS and slow the decay of RONS thereby prolonging their bioactivity and effectiveness. The new insights into the effective melanoma treatment suggest that the rich mixture of RONS within PA-CMNs prepared by custom-developed hybrid plasma-assisted configuration induces both ferroptosis and apoptosis to selectively kill tumor cells. A significant inhibition of subcutaneous A375 melanoma growth was observed in PA-CMNs-treated tumor-bearing nude mice without any signs of systemic toxicity. The new approach based on PA-CMNs may potentially open new avenues for a broader range of disease treatments.
Asunto(s)
Melanoma , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Neoplasias Cutáneas , Animales , Melanoma/terapia , Melanoma/patología , Melanoma/metabolismo , Melanoma/tratamiento farmacológico , Humanos , Ratones , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Especies de Nitrógeno Reactivo/metabolismo , Gases em Plasma/uso terapéutico , Apoptosis , Agujas , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones DesnudosRESUMEN
Plasma-activated water (PAW) is a novel antimicrobial agent with negligible toxicity and environmental burden, holding promise as an alternative to chemical disinfectants and antibiotics. In practice, liquid disinfectants are often soaked with cotton materials before further use. Rich in reducing functional groups on the surface, cotton will inevitably react with PAW, leading to the deterioration of PAW's functions. To resolve this issue, this work proposes a new concept of "secondary activation" for retaining and enhancing PAW's bioactivity, i.e., pre-treating cotton with air plasma before soaking PAW. For the first time, we find that the PAW absorbed by raw cotton completely loses its bactericidal effect, while plasma-treated cotton (PTC) restores the disinfection capacity and prolongs its effective duration. This restoration is attributed to the absorption of plasma-generated reactive species by cotton with oxidizing and nitrifying modifications on the fiber surface. Consequently, the concentrations of aqueous species in PAW increase rather than decrease after absorption by PTC. In addition, the PTC after 28-day storage can still enable PAW to achieve a bacterial reduction of â¼3 logs. This work identifies and addresses a crucial limitation in the disinfection application of PAW and elucidates the mechanism underlying PTC production and secondary activation of PAW.
RESUMEN
Efficient disinfection of pathogens is a critical concern for environmental disinfection and clinical anti-infective treatment. Plasma-activated water (PAW) is a promising alternative to chemical disinfectants and antibiotics for its strong disinfection ability and not inducing any acute toxicity. Previous plasma sources are commonly placed near or fully in contact with water as possible for more efficient activation, but the risk of electrode corrosion and metal particle contamination of water threatens the safety and stability of PAW. In this work, plasma-activated gas (PAG) rich in high-valence NOx is generated by a hybrid plasma configuration and introduced into water for off-site PAW production. It is found that plasma-generated O3 dominates the gas-phase reactions for the formation of high-valence NOx. With the time-evolution of O3 concentration, the gaseous NO3 radicals are produced behind N2O5 formation, but will be decomposed before N2O5 quenching. By decoupling the roles of gaseous NO3, N2O5, and O3 in the water activation, results show that short-lived aqueous species induced by gaseous NO3 radicals play the most crucial role in PAW disinfection, and the acidic environment induced by N2O5 is also beneficial for microbial inactivation. Moreover, SEM photographs and biomacromolecule leakage assays demonstrate that PAW disrupts the cell membranes of bacteria and thus achieves inactivation. In real-life applications, an integrated device for off-site PAW production with a yield of 2 L/h and a bactericidal efficiency of >99.9 % is developed. The PAW of 50 mL produced in 3 min using this device is more effective in disinfection than 0.5 % NaClO and 3 % H2O2 with the same bacterial contact time. Overall, this work provides new avenues for efficient PAW production and deepens insights into the fundamental chemical processes that govern the reactive chemistry in PAW for environmental and biomedical applications.
RESUMEN
A continuous risk from microbial infections poses a major environmental and public health challenge. As an emerging strategy for inhibiting bacterial infections, plasma-activated water (PAW) has proved to be highly effective, environmental-friendly, and non-drug resistant to a broad range of microorganisms. However, the relatively short lifetime of reactive oxygen and nitrogen species (RONS) and the high spreadability of liquid PAW inevitably limit its real-life applications. In this study, plasma-activated hydrogel (PAH) is developed to act as reactive species carrier that allow good storage and controlled slow-release of RONS to achieve long-term antibacterial effects. Three hydrogel materials, including hydroxyethyl cellulose (HEC), carbomer 940 (Carbomer), and acryloyldimethylammonium taurate/VP copolymer (AVC) are selected, and their antibacterial performances under different plasma activation conditions are investigated. It is shown that the composition of the gels plays the key role in determining their biochemical functions after the plasma activation. The antimicrobial performance of AVC is much better than that of PAW and the other two hydrogels, along with the excellent stability to maintain the antimicrobial activity for more than 14 days. The revealed mechanism of the antibacterial ability of the PAH identifies the unique combination of short-lived species (1 O2 , âOH, ONOO- and O2 - ) stored in hydrogels. Overall, this study demonstrates the efficacy and reveals the mechanisms of the PAH as an effective and long-term disinfectant capable of delivering and preserving antibacterial chemistries for biomedical applications.
Asunto(s)
Antiinfecciosos , Desinfección , Hidrogeles/química , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Antibacterianos/química , Polímeros , Especies de Nitrógeno ReactivoRESUMEN
The airborne microorganisms in the aerosols are one main transmission way of pathogenic microorganisms and therefore inactivation of microorganisms in aerosols could effectively prevent the transmission of pathogenic microorganisms to control epidemics. The mist nebulized by plasma-activated air could effectively inactivate bacteria and could be developed for the sterilization of microorganisms in aerosols. In this study, the plasma-activated nebulized mist (PANM) was applied for the inactivation of microorganisms in aerosols and efficiently inactivated the bacteria, yeast, and viruses in aerosols after 2-min treatment. The PANM treatment caused morphologic changes and damage to the bacteria cells in aerosols. The PANM could also inactivate the microorganisms attached to the surface of the treatment chamber and the bacteria attached to the skin of mice within 6-min treatment. The biosafety assays demonstrated that the PANM treatment exhibited no effects on the behavior, hematological and serum biochemical parameters of blood, and organs from the mice. This study would supply an efficient, broad-spectrum, and safe aerosol sterilization strategy based on plasma technology to prevent the transmission of airborne microorganisms.