Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Nature ; 574(7779): 511-515, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31645731

RESUMEN

Over the past few decades, several molecular cages, hosts and nanoporous materials enclosing nanometre-sized cavities have been reported1-5, including coordination-driven nanocages6. Such nanocages have found widespread use in molecular recognition, separation, stabilization and the promotion of unusual chemical reactions, among other applications3-10. Most of the reported nanospaces within molecular hosts are confined by aromatic walls, the properties of which help to determine the host-guest behaviour. However, cages with nanospaces surrounded by antiaromatic walls have not yet been developed, owing to the instability of antiaromatic compounds; as such, the effect of antiaromatic walls on the properties of nanospaces remains unknown. Here we demonstrate the construction of an antiaromatic-walled nanospace within a self-assembled cage composed of four metal ions with six identical antiaromatic walls. Calculations indicate that the magnetic effects of the antiaromatic moieties surrounding this nanospace reinforce each other. This prediction is confirmed by 1H nuclear magnetic resonance (NMR) signals of bound guest molecules, which are observed at chemical shift values of up to 24 parts per million (ppm), owing to the combined antiaromatic deshielding effect of the surrounding rings. This value, shifted 15 ppm from that of the free guest, is the largest 1H NMR chemical shift displacement resulting from an antiaromatic environment observed so far. This cage may thus be considered as a type of NMR shift reagent, moving guest signals well beyond the usual NMR frequency range and opening the way to further probing the effects of an antiaromatic environment on a nanospace.

2.
J Am Chem Soc ; 146(8): 5215-5223, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38349121

RESUMEN

Heteroleptic metal-organic capsules, which incorporate more than one type of ligand, can provide enclosed, anisotropic interior cavities for binding low-symmetry molecules of biological and industrial importance. However, the selective self-assembly of a single mixed-ligand architecture, as opposed to the numerous other possible self-assembly outcomes, remains a challenge. Here, we develop a design strategy for the subcomponent self-assembly of heteroleptic metal-organic architectures with anisotropic internal void spaces. Zn6Tet3Tri2 triangular prismatic and Zn8Tet2Tet'4 tetragonal prismatic architectures were prepared through careful matching of the side lengths of the tritopic (Tri) or tetratopic (Tet, Tet') and panels.

3.
J Am Chem Soc ; 146(4): 2370-2378, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38251968

RESUMEN

The use of copper(I) in metal-organic assemblies leads readily to the formation of simple grids and helicates, whereas higher-order structures require complex ligand designs. Here, we report the clean and selective syntheses of two complex and structurally distinct CuI12L8 frameworks, 1 and 2, which assemble from the same simple triaminotriptycene subcomponent and a formylpyridine around the CuI templates. Both represent new structure types. In T-symmetric 1, the copper(I) centers describe a pair of octahedra with a common center but whose vertices are offset from each other, whereas in D3-symmetric 2, the metal ions form a distorted hexagonal prism. The syntheses of these architectures illustrate how more intricate CuI-based complexes can be prepared via subcomponent self-assembly than has been possible to date through consideration of the interplay between the subcomponent geometry and solvent and electronic effects.

4.
J Am Chem Soc ; 146(4): 2379-2386, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38251985

RESUMEN

Control over the stereochemistry of metal-organic cages can give rise to useful functions that are entwined with chirality, such as stereoselective guest binding and chiroptical applications. Here, we report a chiral CuI12L4 pseudo-octahedral cage that self-assembled from condensation of triaminotriptycene, aminoquinaldine, and diformylpyridine subcomponents around CuI templates. The corners of this cage consist of six head-to-tail dicopper(I) helicates whose helical chirality can be controlled by the addition of enantiopure 1,1'-bi-2-naphthol (BINOL) during the assembly process. Chiroptical and nuclear magnetic resonance (NMR) studies elucidated the process and mechanism of stereochemical information transfer from BINOL to the cage during the assembly process. Initially formed CuI(BINOL)2 thus underwent stereoselective ligand exchange during the formation of the chiral helicate corners of the cage, which determined the overall cage stereochemistry. The resulting dicopper(I) helicate corners of the cage were also shown to generate circularly polarized luminescence.

5.
J Am Chem Soc ; 145(29): 15990-15996, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37440669

RESUMEN

This work introduces the use of 8-aminoquinoline subcomponents to generate complex three-dimensional structures. Together with a tris(formylpyridine), 8-aminoquinoline condensed around ZnII templates to produce a tris(tridentate) ligand. This ligand is incorporated into either a tricapped trigonal prismatic ZnII9L6 structure or a pair of pseudo-octahedral ZnII6L4 diastereomers, with S4 and D2 symmetries. Introduction of a methyl group onto the aminoquinoline modulated the coordination sphere of ZnII, which favored the ZnII9L6 structure and disfavored the ZnII6L4 assembly. The tricapped trigonal prismatic ZnII9L6 architecture converted into a single ZnII6L4 cage diastereomer following the addition of a dianionic 4,4'-dinitrostilbene-2,2'-disulfonate guest. Four of these guests clustered tightly at the four windows of the ZnII6L4 cage, held in place through electrostatic interactions and hydrogen bonding, stabilize a single diastereomeric configuration with S4 symmetry.

6.
J Am Chem Soc ; 145(18): 9965-9969, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37115100

RESUMEN

The structural complexity of self-assembled metal-organic capsules can be increased by incorporating two or more different ligands into a single discrete product. Such complexity can be useful, by enabling larger, less-symmetrical, or more guests to be bound. Here we describe a rational design strategy for the use of subcomponent self-assembly to selectively prepare a heteroleptic cage with a large cavity volume (2631 Å3) from simple, commercially available starting materials. Our strategy involves the initial isolation of a tris(iminopyridyl) PdII3 complex 1, which reacts with tris(pyridyl)triazine ligand 2 to form a heteroleptic sandwich-like architecture 3. The tris(iminopyridyl) ligand within 3 serves as a "brace" to control the orientations of the labile coordination sites on the PdII centers. Self-assembly of 3 with additional 2 was thus directed to generate a large PdII12 heteroleptic cuboctahedron host. This new cuboctahedron was observed to bind multiple polycyclic aromatic hydrocarbon guests simultaneously.

7.
J Am Chem Soc ; 145(35): 19164-19170, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37610128

RESUMEN

A ZnII8L6 pseudocube containing anthracene-centered ligands, a ZnII4L'4 tetrahedron with a similar side length as the cube, and a trigonal prism ZnII6L3L'2 were formed in equilibrium from a common set of subcomponents. Hetero-Diels-Alder reaction with photogenerated singlet oxygen transformed the anthracene-containing "L" ligands into endoperoxide "LO" ones and ultimately drove the integrative self-sorting to form the trigonal prismatic cage ZnII6LO3L'2 exclusively. This ZnII6LO3L'2 structure lost dioxygen in a retro-Diels-Alder reaction after heating, which resulted in reversion to the initial ZnII8L6 + ZnII4L'4 ⇌ 2 × ZnII6L3L'2 equilibrating system. Whereas the ZnII8L6 pseudocube had a cavity too small for guest encapsulation, the ZnII6L3L'2 and ZnII6LO3L'2 trigonal prisms possessed peanut-shaped internal cavities with two isolated compartments divided by bulky anthracene panels. Guest binding was also observed to drive the equilibrating system toward exclusive formation of the ZnII6L3L'2 structure, even in the absence of reaction with singlet oxygen.

8.
J Am Chem Soc ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36753330

RESUMEN

A strategy for light-powered guest release from a tetrahedral capsule has been developed by incorporating azobenzene units at its vertices. A new Zn4L4 tetrahedral capsule bearing 12 diazo moieties at its metal-ion vertices was prepared from a phenyldiazenyl-functionalized subcomponent and a central trialdehyde panel. Ultraviolet irradiation caused isomerization of the peripheral diazo groups from the thermodynamically preferred trans configuration to the cis form, thereby generating steric clash and resulting in cage disassembly and concomitant guest release. Visible-light irradiation drove cage re-assembly following re-isomerization of the diazo groups to the trans form, resulting in guest re-uptake. A detailed 19F NMR study elucidated how switching led to guest release: each metal vertex tolerated only one cis-azobenzene moiety, with further isomerization leading to cage disassembly.

9.
J Am Chem Soc ; 145(20): 11356-11363, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37191451

RESUMEN

The allosteric regulation of biomolecules, such as enzymes, enables them to adapt and alter their conformation to fit specific substrates, expressing different functionalities in response to stimuli. Different stimuli can also trigger synthetic coordination cages to change their shape, size, and nuclearity by reconfiguring the dynamic metal-ligand bonds that hold them together. Here we demonstrate an abiological system consisting of different organic subcomponents and ZnII metal ions, which can respond to simple stimuli in complex ways. A ZnII20L12 dodecahedron transforms to give a larger ZnII30L12 icosidodecahedron through subcomponent exchange, as an aldehyde that forms bidentate ligands is displaced in favor of one that forms tridentate ligands together with a penta-amine subcomponent. In the presence of a chiral template guest, the same system that produced the icosidodecahedron instead gives a ZnII15L6 truncated rhombohedral architecture through enantioselective self-assembly. Under specific crystallization conditions, a guest induces a further reconfiguration of either the ZnII30L12 or ZnII15L6 cages to yield an unprecedented ZnII20L8 pseudo-truncated octahedral structure. The transformation network of these cages shows how large synthetic hosts can undergo structural adaptation through the application of chemical stimuli, opening pathways to broader applications.

10.
J Am Chem Soc ; 145(9): 5570-5577, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36848676

RESUMEN

A tetrahedral FeII4L4 cage assembled from the coordination of triangular chiral, face-capping ligands to iron(II). This cage exists as two diastereomers in solution, which differ in the stereochemistry of their metal vertices, but share the same point chirality of the ligand. The equilibrium between these cage diastereomers was subtly perturbed by guest binding. This perturbation from equilibrium correlated with the size and shape fit of the guest within the host; insight as to the interplay between stereochemistry and fit was provided by atomistic well-tempered metadynamics simulations. The understanding thus gained as to the stereochemical impact on guest binding enabled the design of a straightforward process for the resolution of the enantiomers of a racemic guest.

11.
Chem Soc Rev ; 51(12): 5101-5135, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35661155

RESUMEN

The flexibility of biomolecules enables them to adapt and transform as a result of signals received from the external environment, expressing different functions in different contexts. In similar fashion, coordination cages can undergo stimuli-triggered transformations owing to the dynamic nature of the metal-ligand bonds that hold them together. Different types of stimuli can trigger dynamic reconfiguration of these metal-organic assemblies, to switch on or off desired functionalities. Such adaptable systems are of interest for applications in switchable catalysis, selective molecular recognition or as transformable materials. This review highlights recent advances in the transformation of cages using chemical stimuli, providing a catalogue of reported strategies to transform cages and thus allow the creation of new architectures. Firstly we focus on strategies for transformation through the introduction of new cage components, which trigger reconstitution of the initial set of components. Secondly we summarize conversions triggered by external stimuli such as guests, concentration, solvent or pH, highlighting the adaptation processes that coordination cages can undergo. Finally, systems capable of responding to multiple stimuli are described. Such systems constitute composite chemical networks with the potential for more complex behaviour. We aim to offer new perspectives on how to design transformation networks, in order to shed light on signal-driven transformation processes that lead to the preparation of new functional metal-organic architectures.


Asunto(s)
Metales , Catálisis , Ligandos , Solventes/química
12.
Angew Chem Int Ed Engl ; 62(39): e202309589, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37610599

RESUMEN

The anthracene panels of two tetrahedral MII 4 L6 cages, where MII =CoII or FeII , were found to react with photogenerated singlet oxygen (1 O2 ) in a hetero-Diels-Alder reaction. ESI-MS analysis showed the cobalt(II) cages to undergo complete transformation of all anthracene panels into endoperoxides, whereas the iron(II) congeners underwent incomplete conversion. The reaction was found to be partially reversible in the case of the 1-FeII cage. The dioxygen-cage cycloadducts were found to bind a set of guest molecules more weakly than the parent cages, with affinity dropping by more than two orders of magnitude in some cases. The light-driven cycloaddition reaction between cage and 1 O2 thus served as a stimulus for guest release and reuptake.

13.
Angew Chem Int Ed Engl ; 62(10): e202217987, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36637345

RESUMEN

We derive design principles for the assembly of rectangular tetramines into Zn8 L6 pseudo-cubic coordination cages. Because of the rectangular, as opposed to square, geometry of the ligand panels, and the possibility of either Δ or Λ handedness of each metal center at the eight corners of the pseudo-cube, many different cage diastereomers are possible. Each of the six tetra-aniline subcomponents investigated in this work assembled with zinc(II) and 2-formylpyridine in acetonitrile into a single Zn8 L6 pseudo-cube diastereomer, however. Each product corresponded to one of four diastereomeric configurations, with T, Th , S6 or D3 symmetry. The preferred diastereomer for a given tetra-aniline subcomponent was shown to be dependent on its aspect ratio and conformational flexibility. Analysis of computationally modeled individual faces or whole pseudo-cubes provided insight as to why the observed diastereomers were favored.

14.
Angew Chem Int Ed Engl ; 62(12): e202216729, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36652344

RESUMEN

Organic semiconductors are promising for efficient, printable optoelectronics. However, strong excited-state quenching due to uncontrolled aggregation limits their use in devices. We report on the self-assembly of a supramolecular pseudo-cube formed from six perylene diimides (PDIs). The rigid, shape-persistent cage sets the distance and orientation of the PDIs and suppresses intramolecular rotations and vibrations, leading to non-aggregated, monomer-like properties in solution and the solid state, in contrast to the fast fluorescence quenching in the free ligand. The stabilized excited state and electronic purity in the cage enables the observation of delayed fluorescence due to a bright excited multimer, acting as excited-state reservoir in a rare case of benign inter-chromophore interactions in the cage. We show that self-assembly provides a powerful tool for retaining and controlling the electronic properties of chromophores, and to bring molecular electronics devices within reach.

15.
Angew Chem Int Ed Engl ; 62(16): e202301612, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36815728

RESUMEN

A double-walled tetrahedral metal-organic cage assembled in solution from silver(I), 2-formyl-1,8-naphthyridine, halide, and a threefold-symmetric triamine. The AgI 4 X clusters at its vertices each bring together six naphthyridine-imine moieties, leading to a structure in which eight tritopic ligands bridge four clusters in an (AgI 4 X)4 L8 arrangement. Four ligands form an inner set of tetrahedron walls that are surrounded by the outer four. The cage has significant interior volume, and was observed to bind anionic guests. The structure also possesses external binding clefts, located at the edges of the cage, which bound small aromatic guests. Halide ions bound to the silver clusters were observed to exchange in a well-defined hierarchy, allowing modulation of the cavity volume. The principles uncovered here may allow for increasingly more sophisticated cages with silver-cluster vertex architectures, with post-assembly tuning of the interior cavity volume enabling targeted binding behavior.

16.
J Am Chem Soc ; 144(14): 6136-6142, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35364808

RESUMEN

An enantiopure ligand with four bidentate metal-binding sites and four (S)-carbon stereocenters self-assembles with octahedral ZnII or CoII to produce O-symmetric M8L6 coordination cages. The Λ- or Δ-handedness of the metal centers forming the corners of these cages is determined by the solvent environment: the same (S)-ligand produces one diastereomer, (S)24-Λ8-M8L6, in acetonitrile but another with opposite metal-center handedness, (S)24-Δ8-M8L6, in nitromethane. Van 't Hoff analysis revealed the Δ stereochemical configuration to be entropically favored but enthalpically disfavored, consistent with a loosening of the coordination sphere and an increase in conformational freedom following Λ-to-Δ transition. The binding of 4,4'-dipyridyl naphthalenediimide and tetrapyridyl Zn-porphyrin guests did not interfere with the solvent-driven stereoselectivity of self-assembly, suggesting applications where either a Λ- or Δ-handed framework may enable chiral separations or catalysis.


Asunto(s)
Metales , Catálisis , Ligandos , Conformación Molecular , Solventes
17.
J Am Chem Soc ; 144(19): 8467-8473, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35511929

RESUMEN

Biological systems employ multimetallic assemblies to achieve a range of functions. Here we demonstrate the preparation of metal-organic cages that contain either homobimetallic or heterobimetallic vertices. These vertices are constructed using 2-formyl-6-diphenylphosphinopyridine, which forms ligands that readily bridge between a pair of metal centers, thus enforcing the formation of bimetallic coordination motifs. Two pseudo-octahedral homometallic MI12L4 cages (MI = CuI or AgI) were prepared, with a head-to-head configuration of their vertices confirmed by X-ray crystallography and multinuclear NMR for AgI. The phosphino-pyridine subcomponent also enabled the formation of a class of octanuclear CdII4CuI4L4 tetrahedral cages, representing an initial example of self-assembled cages containing well-defined heterobimetallic vertices.


Asunto(s)
Metales , Piridinas , Cristalografía por Rayos X , Ligandos , Metales/química , Modelos Moleculares , Piridinas/química
18.
J Am Chem Soc ; 144(3): 1106-1112, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35014803

RESUMEN

We report the construction of three structurally distinct self-assembled architectures: FeII12L12 pseudoicosahedron 1, FeII2L3 helicate 2, and FeII4L4 tetrahedron 3, formed from a single triazatriangulenium subcomponent A under different reaction conditions. Pseudoicosahedral capsule 1 is the largest formed through subcomponent self-assembly to date, with an outer-sphere diameter of 5.4 nm and a cavity volume of 15 nm3. The outcome of self-assembly depended upon concentration, where the formation of pseudoicosahedron 1 was favored at higher concentrations, while helicate 2 exclusively formed at lower concentrations. The conversion of pseudoicosahedron 1 or helicate 2 into tetrahedron 3 occurred following the addition of a CB11H12- or B12F122- template.

19.
Chem Rev ; 120(24): 13480-13544, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238092

RESUMEN

Compartmentalization of the aqueous space within a cell is necessary for life. In similar fashion to the nanometer-scale compartments in living systems, synthetic water-soluble coordination cages (WSCCs) can isolate guest molecules and host chemical transformations. Such cages thus show promise in biological, medical, environmental, and industrial domains. This review highlights examples of three-dimensional synthetic WSCCs, offering perspectives so as to enhance their design and applications. Strategies are presented that address key challenges for the preparation of coordination cages that are soluble and stable in water. The peculiarities of guest binding in aqueous media are examined, highlighting amplified binding in water, changing guest properties, and the recognition of specific molecular targets. The properties of WSCC hosts associated with biomedical applications, and their use as vessels to carry out chemical reactions in water, are also presented. These examples sketch a blueprint for the preparation of new metal-organic containers for use in aqueous solution, as well as guidelines for the engineering of new applications in water.

20.
Angew Chem Int Ed Engl ; 61(50): e202212634, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36264645

RESUMEN

Spin-crossover (SCO) metal-organic cages capable of switching between high-spin and low-spin states have the potential to be used as magnetic sensors and switches. Variation of the donor strength of heterocyclic aldehyde subcomponents in imine-based ligands can tune the ligand field for a FeII center, which results in both homoleptic and heteroleptic cages with diverse SCO behaviors. The tetrahedral SCO cage built from 1-methyl-1H-imidazole-2-carbaldehyde is capable of encapsulating various guests, which stabilize different cage spin states depending on guest size. Conversely, the SCO tetrahedron exhibits different affinities for guests in different spin states, which is inferred to result from subtle structural differences of the cavity caused by the change in metal center spin state. Examination of SCO thermodynamics across a series of host-guest complexes enabled sensitive probing of guest fit to the host cavity, providing information complementary to binding-constant determination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA