Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Trends Genet ; 38(11): 1101-1102, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35581033

RESUMEN

Animal models of Down syndrome (DS) provide an essential resource for understanding genetic, cellular, and molecular contributions to traits associated with trisomy 21 (Ts21). Recent genetic enhancements in the development of DS models, including the new TcHSA21rat model (Kazuki et al.), have potential to transform our understanding of and potential therapies for Ts21.


Asunto(s)
Síndrome de Down , Animales , Modelos Animales de Enfermedad , Síndrome de Down/genética , Fenotipo , Ratas
2.
Neurobiol Dis ; 190: 106359, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992782

RESUMEN

Aberrant neurodevelopment in Down syndrome (DS)-caused by triplication of human chromosome 21-is commonly attributed to gene dosage imbalance, linking overexpression of trisomic genes with disrupted developmental processes, with DYRK1A particularly implicated. We hypothesized that regional brain DYRK1A protein overexpression in trisomic mice varies over development in sex-specific patterns that may be distinct from Dyrk1a transcription, and reduction of Dyrk1a copy number from 3 to 2 in otherwise trisomic mice reduces DYRK1A, independent of other trisomic genes. DYRK1A overexpression varied with age, sex, and brain region, with peak overexpression on postnatal day (P) 6 in both sexes. Sex-dependent differences were also evident from P15-P24. Reducing Dyrk1a copy number confirmed that these differences depended on Dyrk1a gene dosage and not other trisomic genes. Trisomic Dyrk1a mRNA and protein expression were not highly correlated. Sex-specific patterns of DYRK1A overexpression during trisomic neurodevelopment may provide mechanistic targets for therapeutic intervention in DS.


Asunto(s)
Síndrome de Down , Animales , Femenino , Humanos , Masculino , Ratones , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/metabolismo , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo
3.
Curr Osteoporos Rep ; 19(3): 338-346, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33830429

RESUMEN

PURPOSE: Down syndrome (DS) is caused by trisomy 21 (Ts21) and results in skeletal deficits including shortened stature, low bone mineral density, and a predisposition to early onset osteoporosis. Ts21 causes significant alterations in skeletal development, morphology of the appendicular skeleton, bone homeostasis, age-related bone loss, and bone strength. However, the genetic or cellular origins of DS skeletal phenotypes remain unclear. RECENT FINDINGS: New studies reveal a sexual dimorphism in characteristics and onset of skeletal deficits that differ between DS and typically developing individuals. Age-related bone loss occurs earlier in the DS as compared to general population. Perturbations of DS skeletal quality arise from alterations in cellular and molecular pathways affected by the overexpression of trisomic genes. Sex-specific alterations occur in critical developmental pathways that disrupt bone accrual, remodeling, and homeostasis and are compounded by aging, resulting in increased risks for osteopenia, osteoporosis, and fracture in individuals with DS.


Asunto(s)
Densidad Ósea/fisiología , Enfermedades Óseas/fisiopatología , Síndrome de Down/fisiopatología , Humanos , Fenotipo
4.
Am J Med Genet A ; 179(2): 177-182, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30588741

RESUMEN

Feeding and swallowing disorders have been described in children with a variety of neurodevelopmental disabilities, including Down syndrome (DS). Abnormal feeding and swallowing can be associated with serious sequelae such as failure to thrive and respiratory complications, including aspiration pneumonia. Incidence of dysphagia in young infants with DS has not previously been reported. To assess the identification and incidence of feeding and swallowing problems in young infants with DS, a retrospective chart review of 174 infants, ages 0-6 months was conducted at a single specialty clinic. Fifty-seven percent (100/174) of infants had clinical concerns for feeding and swallowing disorders that warranted referral for Videofluroscopic Swallow Study (VFSS); 96/174 (55%) had some degree of oral and/or pharyngeal phase dysphagia and 69/174 (39%) had dysphagia severe enough to warrant recommendation for alteration of breast milk/formula consistency or nonoral feeds. Infants with certain comorbidities had significant risk for significant dysphagia, including those with functional airway/respiratory abnormalities (OR = 7.2). Infants with desaturation with feeds were at dramatically increased risk (OR = 15.8). All young infants with DS should be screened clinically for feeding and swallowing concerns. If concerns are identified, consideration should be given to further evaluation with VFSS for identification of dysphagia and additional feeding modifications.


Asunto(s)
Trastornos de Deglución/fisiopatología , Síndrome de Down/fisiopatología , Trastornos de Alimentación y de la Ingestión de Alimentos/fisiopatología , Trastornos de Deglución/complicaciones , Trastornos de Deglución/epidemiología , Síndrome de Down/complicaciones , Síndrome de Down/epidemiología , Trastornos de Alimentación y de la Ingestión de Alimentos/complicaciones , Trastornos de Alimentación y de la Ingestión de Alimentos/epidemiología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Leche Humana , Estudios Retrospectivos , Factores de Riesgo
5.
Hum Mol Genet ; 25(22): 4856-4869, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28172997

RESUMEN

Trisomy 21 (Ts21) affects craniofacial precursors in individuals with Down syndrome (DS). The resultant craniofacial features in all individuals with Ts21 may significantly affect breathing, eating and speaking. Using mouse models of DS, we have traced the origin of DS-associated craniofacial abnormalities to deficiencies in neural crest cell (NCC) craniofacial precursors early in development. Hypothetically, three copies of Dyrk1a (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A), a trisomic gene found in most humans with DS and mouse models of DS, may significantly affect craniofacial structure. We hypothesized that we could improve DS-related craniofacial abnormalities in mouse models using a Dyrk1a inhibitor or by normalizing Dyrk1a gene dosage. In vitro and in vivo treatment with Epigallocatechin-3-gallate (EGCG), a Dyrk1a inhibitor, modulated trisomic NCC deficiencies at embryonic time points. Furthermore, prenatal EGCG treatment normalized some craniofacial phenotypes, including cranial vault in adult Ts65Dn mice. Normalization of Dyrk1a copy number in an otherwise trisomic Ts65Dn mice normalized many dimensions of the cranial vault, but did not correct all craniofacial anatomy. These data underscore the complexity of the gene­phenotype relationship in trisomy and suggest that changes in Dyrk1a expression play an important role in morphogenesis and growth of the cranial vault. These results suggest that a temporally specific prenatal therapy may be an effective way to ameliorate some craniofacial anatomical changes associated with DS.


Asunto(s)
Catequina/análogos & derivados , Síndrome de Down/terapia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Animales , Catequina/farmacología , Anomalías Craneofaciales/enzimología , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/terapia , Modelos Animales de Enfermedad , Síndrome de Down/enzimología , Síndrome de Down/genética , Femenino , Dosificación de Gen , Ratones , Fenotipo , Fosforilación , Embarazo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Quinasas DyrK
6.
Hum Mol Genet ; 24(20): 5687-96, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26206885

RESUMEN

Trisomy 21 causes skeletal alterations in individuals with Down syndrome (DS), but the causative trisomic gene and a therapeutic approach to rescue these abnormalities are unknown. Individuals with DS display skeletal alterations including reduced bone mineral density, modified bone structure and distinctive facial features. Due to peripheral skeletal anomalies and extended longevity, individuals with DS are increasingly more susceptible to bone fractures. Understanding the genetic and developmental origin of DS skeletal abnormalities would facilitate the development of therapies to rescue these and other deficiencies associated with DS. DYRK1A is found in three copies in individuals with DS and Ts65Dn DS mice and has been hypothesized to be involved in many Trisomy 21 phenotypes including skeletal abnormalities. Return of Dyrk1a copy number to normal levels in Ts65Dn mice rescued the appendicular bone abnormalities, suggesting that appropriate levels of DYRK1A expression are critical for the development and maintenance of the DS appendicular skeleton. Therapy using the DYRK1A inhibitor epigallocatechin-3-gallate improved Ts65Dn skeletal phenotypes. These outcomes suggest that the osteopenic phenotype associated with DS may be rescued postnatally by targeting trisomic Dyrk1a.


Asunto(s)
Enfermedades Óseas/genética , Catequina/análogos & derivados , Síndrome de Down/genética , Dosificación de Gen , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Animales , Enfermedades Óseas/tratamiento farmacológico , Catequina/uso terapéutico , Modelos Animales de Enfermedad , Masculino , Ratones , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Quinasas DyrK
7.
Am J Med Genet A ; 167A(2): 324-30, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25604659

RESUMEN

Children with Down syndrome (DS) experience congenital and functional medical issues that predispose them to obstructive sleep apnea (OSA). Research utilizing stringent age criteria among samples of infants with DS and OSA is limited. This study examines clinical correlates of OSA among infants with DS. A retrospective chart review was conducted of infants ≤6 months of age referred to a DS clinic at a tertiary children's hospital over five-years (n = 177). Chi-square tests and binary logistic regression models were utilized to analyze the data. Fifty-nine infants underwent polysomnography, based on clinical concerns. Of these, 95% (56/59) had studies consistent with OSA. Among infants with OSA, 71% were identified as having severe OSA (40/56). The minimum overall prevalence of OSA among the larger group of infants was 31% (56/177). Significant relationships were found between OSA and dysphagia, congenital heart disease (CHD), prematurity, gastroesophageal reflux disease (GERD), and other functional and anatomic gastrointestinal (GI) conditions. Results indicate that odds of OSA in this group are higher among infants with GI conditions in comparison to those without. Co-occurring dysphagia and CHD predicted the occurrence of OSA in 36% of cases with an overall predictive accuracy rate of 71%. Obstructive sleep apnea is relatively common in young infants with DS and often severe. Medical factors including GI conditions, dysphagia and CHD may help to identify infants who are at greater risk and may warrant evaluation. Further studies are needed to assess the impact of OSA in infants with DS.


Asunto(s)
Síndrome de Down/complicaciones , Síndrome de Down/epidemiología , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/epidemiología , Síndrome de Down/diagnóstico , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Fenotipo , Polisomnografía , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Apnea Obstructiva del Sueño/diagnóstico
8.
Bone ; 181: 117046, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38336158

RESUMEN

Down syndrome (DS), affecting ∼1 in 800 live births, is caused by the triplication of human chromosome 21 (Hsa21). Individuals with DS have skeletal features including craniofacial abnormalities and decreased bone mineral density (BMD). Lowered BMD can lead to increased fracture risk, with common fracture points at the femoral neck and lumbar spine. While the femur has been studied in DS mouse models, there is little research done on the vertebrae despite evidence that humans with DS have affected vertebrae. Additionally, it is important to establish when skeletal deficits occur to find times of potential intervention. The Dp(16)1Yey DS mouse model has all genes triplicated on mouse chromosome 16 orthologous to Hsa21 and displayed deficits in long bone, including trabecular and cortical deficits in male but not female mice, at 12 weeks. We hypothesized that the long bone and lumbovertebral microarchitecture would exhibit sexually dimorphic deficits in Dp(16)1Yey mice compared to control mice and long bone strength would be diminished in Dp(16)1Yey mice at 6 weeks. The trabecular region of the 4th lumbar (L4) vertebra and the trabecular and cortical regions of the femur were analyzed via micro-computed tomography and 3-point bending in 6-week-old male and female Dp(16)1Yey and control mice. Trabecular and cortical deficits were observed in femurs from male Dp(16)1Yey mice, and cortical deficits were seen in femurs of male and female Dp(16)1Yey mice. Male Dp(16)1Yey femurs had more deficits in bone strength at whole bone and tissue-estimate level properties, but female Dp(16)1Yey mice were also affected. Additionally, the L4 of male and female Dp(16)1Yey mice show trabecular deficits, which have not been previously reported in a DS mouse model. Our results indicate that skeletal deficits associated with DS occur early in skeletal development, are dependent on skeletal compartment and site, are sex dependent, and potential interventions should likely begin early in skeletal development of DS mouse models.


Asunto(s)
Síndrome de Down , Masculino , Ratones , Humanos , Femenino , Animales , Síndrome de Down/complicaciones , Síndrome de Down/genética , Microtomografía por Rayos X , Fémur/diagnóstico por imagen , Cuello Femoral , Columna Vertebral , Modelos Animales de Enfermedad , Densidad Ósea
9.
bioRxiv ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38826419

RESUMEN

Skeletal insufficiency affects all individuals with Down syndrome (DS) or Trisomy 21 (Ts21) and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and Dyrk1a overexpression were transitory until postnatal day (P) 30 when there were persistent trabecular and cortical deficits and Dyrk1a was trending overexpression. Correction of DS-related skeletal deficits by a purported DYRK1A inhibitor or through genetic means beginning at P21 was not effective at P30, but germline normalization of Dyrk1a improved male bone structure by P36. Trabecular and cortical deficits in female Ts65Dn mice were evident at P30 but subsided by P36, typifying periodic developmental skeletal normalizations that progressed to more prominent bone deficiencies. Sex-dependent differences in skeletal deficits with a delayed impact of trisomic Dyrk1a are important to find temporally specific treatment periods for bone and other phenotypes associated with Ts21.

10.
Genes (Basel) ; 15(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38674386

RESUMEN

Down syndrome (DS) is the most common form of inherited intellectual disability caused by trisomy of chromosome 21, presenting with intellectual impairment, craniofacial abnormalities, cardiac defects, and gastrointestinal disorders. The Ts65Dn mouse model replicates many abnormalities of DS. We hypothesized that investigation of the cerebral cortex of fluoxetine-treated trisomic mice may provide proteomic signatures that identify therapeutic targets for DS. Subcellular fractionation of synaptosomes from cerebral cortices of age- and brain-area-matched samples from fluoxetine-treated vs. water-treated trisomic and euploid male mice were subjected to HPLC-tandem mass spectrometry. Analysis of the data revealed enrichment of trisomic risk genes that participate in regulation of synaptic vesicular traffic, pre-synaptic and post-synaptic development, and mitochondrial energy pathways during early brain development. Proteomic analysis of trisomic synaptic fractions revealed significant downregulation of proteins involved in synaptic vesicular traffic, including vesicular endocytosis (CLTA, CLTB, CLTC), synaptic assembly and maturation (EXOC1, EXOC3, EXOC8), anterograde axonal transport (EXOC1), neurotransmitter transport to PSD (SACM1L), endosomal-lysosomal acidification (ROGDI, DMXL2), and synaptic signaling (NRXN1, HIP1, ITSN1, YWHAG). Additionally, trisomic proteomes revealed upregulation of several trafficking proteins, involved in vesicular exocytosis (Rab5B), synapse elimination (UBE3A), scission of endocytosis (DBN1), transport of ER in dendritic spines (MYO5A), presynaptic activity-dependent bulk endocytosis (FMR1), and NMDA receptor activity (GRIN2A). Chronic fluoxetine treatment of Ts65Dn mice rescued synaptic vesicular abnormalities and prevented abnormal proteomic changes in adult Ts65Dn mice, pointing to therapeutic targets for potential treatment of DS.


Asunto(s)
Síndrome de Down , Fluoxetina , Proteómica , Vesículas Sinápticas , Animales , Fluoxetina/farmacología , Ratones , Síndrome de Down/metabolismo , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/genética , Síndrome de Down/patología , Masculino , Proteómica/métodos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Modelos Animales de Enfermedad , Proteoma/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Sinaptosomas/metabolismo , Sinaptosomas/efectos de los fármacos , Trisomía/genética
11.
Am J Med Genet A ; 161A(8): 1866-74, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23843306

RESUMEN

Trisomy 21 in humans causes cognitive impairment, craniofacial dysmorphology, and heart defects collectively referred to as Down syndrome. Yet, the pathophysiology of these phenotypes is not well understood. Craniofacial alterations may lead to complications in breathing, eating, and communication. Ts65Dn mice exhibit craniofacial alterations that model Down syndrome including a small mandible. We show that Ts65Dn embryos at 13.5 days gestation (E13.5) have a smaller mandibular precursor but a normal sized tongue as compared to euploid embryos, suggesting a relative instead of actual macroglossia originates during development. Neurological tissues were also altered in E13.5 trisomic embryos. Our array analysis found 155 differentially expressed non-trisomic genes in the trisomic E13.5 mandible, including 20 genes containing a homeobox DNA binding domain. Additionally, Sox9, important in skeletal formation and cell proliferation, was upregulated in Ts65Dn mandible precursors. Our results suggest trisomy causes altered expression of non-trisomic genes in development leading to structural changes associated with DS. Identification of genetic pathways disrupted by trisomy is an important step in proposing rational therapies at relevant time points to ameliorate craniofacial abnormalities in DS and other congenital disorders.


Asunto(s)
Anomalías Craneofaciales/genética , Modelos Animales de Enfermedad , Síndrome de Down/genética , Embrión de Mamíferos/metabolismo , Trisomía/genética , Animales , Biomarcadores/metabolismo , Proliferación Celular , Anomalías Craneofaciales/metabolismo , Anomalías Craneofaciales/patología , Embrión de Mamíferos/patología , Femenino , Perfilación de la Expresión Génica , Mandíbula/anomalías , Mandíbula/metabolismo , Mandíbula/patología , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción SOX9
12.
Birth Defects Res A Clin Mol Teratol ; 97(4): 187-97, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23554291

RESUMEN

BACKGROUND: Down syndrome (DS) and Fetal Alcohol Syndrome (FAS) are two leading causes of birth defects with phenotypes ranging from craniofacial abnormalities to cognitive impairment. Despite different origins, we report that in addition to sharing many phenotypes, DS and FAS may have common underlying mechanisms of development. METHODS: Literature was surveyed for DS and FAS as well as mouse models. Gene expression and apoptosis were compared in embryonic mouse models of DS and FAS by qPCR, immunohistochemical and immunoflurorescence analyses. The craniometry was examined using MicroCT at postnatal day 21. RESULTS: A literature survey revealed over 20 comparable craniofacial and structural deficits in both humans with DS and FAS and corresponding mouse models. Similar phenotypes were experimentally found in pre- and postnatal craniofacial and neurological tissues of DS and FAS mice. Dysregulation of two genes, Dyrk1a and Rcan1, key to craniofacial and neurological precursors of DS, was shared in craniofacial precursors of DS and FAS embryos. Increased cleaved caspase 3 expression was also discovered in comparable regions of the craniofacial and brain precursors of DS and FAS embryos. Further mechanistic studies suggested overexpression of trisomic Ttc3 in DS embyros may influence nuclear pAkt localization and cell survival. CONCLUSIONS: This first and initial study indicates that DS and FAS share common dysmorphologies in humans and animal models. This work also suggests common mechanisms at cellular and molecular levels that are disrupted by trisomy or alcohol consumption during pregnancy and lead to craniofacial and neurological phenotypes associated with DS or FAS.


Asunto(s)
Anomalías Craneofaciales/genética , Síndrome de Down/genética , Trastornos del Espectro Alcohólico Fetal/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Musculares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Proteínas de Unión al Calcio , Caspasa 3/genética , Caspasa 3/metabolismo , Anomalías Craneofaciales/patología , Modelos Animales de Enfermedad , Síndrome de Down/metabolismo , Femenino , Trastornos del Espectro Alcohólico Fetal/metabolismo , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Proteínas Musculares/genética , Fenotipo , Embarazo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Quinasas DyrK
13.
Dis Model Mech ; 16(4)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36939025

RESUMEN

Down syndrome (DS) phenotypes result from triplicated genes, but the effects of three copy genes are not well known. A mouse mapping panel genetically dissecting human chromosome 21 (Hsa21) syntenic regions was used to investigate the contributions and interactions of triplicated Hsa21 orthologous genes on mouse chromosome 16 (Mmu16) on skeletal phenotypes. Skeletal structure and mechanical properties were assessed in femurs of male and female Dp9Tyb, Dp2Tyb, Dp3Tyb, Dp4Tyb, Dp5Tyb, Dp6Tyb, Ts1Rhr and Dp1Tyb;Dyrk1a+/+/- mice. Dp1Tyb mice, with the entire Hsa21 homologous region of Mmu16 triplicated, display bone deficits similar to those of humans with DS and served as a baseline for other strains in the panel. Bone phenotypes varied based on triplicated gene content, sex and bone compartment. Three copies of Dyrk1a played a sex-specific, essential role in trabecular deficits and may interact with other genes to influence cortical deficits related to DS. Triplicated genes in Dp9Tyb and Dp2Tyb mice improved some skeletal parameters. As triplicated genes can both improve and worsen bone deficits, it is important to understand the interaction between and molecular mechanisms of skeletal alterations affected by these genes.


Asunto(s)
Síndrome de Down , Humanos , Ratones , Masculino , Femenino , Animales , Síndrome de Down/genética , Cromosomas Humanos Par 21 , Modelos Animales de Enfermedad , Fenotipo
14.
Pharmacol Biochem Behav ; 217: 173404, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35576991

RESUMEN

The neurotypical spatiotemporal patterns of gene expression are disrupted in Down syndrome (DS) by trisomy of human chromosome 21 (Hsa21), resulting in altered behavioral development and brain circuitry. The Ts65Dn DS mouse model exhibits similar phenotypes to individuals with DS due to three copies of approximately one-half of the genes found on Hsa21. Dual-specificity Tyrosine Phosphorylation-regulated Kinase 1a (Dyrk1a), one of these triplicated genes, is an attractive target to normalize brain development due to its influence in cellular brain deficits seen in DS. We hypothesized that postnatal development of DYRK1A expression is dysregulated in trisomic animals, and found significant overexpression of DYRK1A in the hippocampus, cerebral cortex, and cerebellum at postnatal day (P) 15 in male-but not female-Ts65Dn mice. We then hypothesized the existence of sex-dependent effects of trisomy on neurobehavioral attributes during P16-17, and that administration of a DYRK1A inhibitor (CX-4945, ~75 mg/kg) beginning on P14 would normalize aberrant behavior in trisomic animals. Both male and female trisomic mice given control injections of phosphate buffered saline (PBS) displayed sustained levels of locomotor activity over a 10-minute test in contrast to the PBS-treated euploid animals that showed significant within-session habituation. Trisomic animals were more persistent in choosing to remain in home shavings in a preference test. Treatment with CX-4945 failed to confirm therapeutic effects. CX-4945 prevented growth, and both CX-4945 and its 10% dimethyl sulfoxide vehicle affected locomotor activity in trisomic and euploid groups, indicating a non-specific disruption of behavior. Despite the negative outcomes for CX-4945, the novel demonstration of sexually dimorphic DYRK1A expression in trisomic animals at P15 supports the broader hypothesis that overexpression of trisomic genes in DS can vary with age, sex, and brain region. Identifying the developmental timing of periods of dysregulated DYRK1A may be important for understanding individual differences in neurodevelopmental trajectories in DS and for developing effective therapeutic interventions targeting DYRK1A.


Asunto(s)
Síndrome de Down , Animales , Modelos Animales de Enfermedad , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/genética , Síndrome de Down/metabolismo , Femenino , Masculino , Ratones , Ratones Transgénicos , Fenotipo , Trisomía
15.
PLoS One ; 17(2): e0264254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35196359

RESUMEN

Bone abnormalities affect all individuals with Down syndrome (DS) and are linked to abnormal expression of DYRK1A, a gene found in three copies in people with DS and Ts65Dn DS model mice. Previous work in Ts65Dn male mice demonstrated that both genetic normalization of Dyrk1a and treatment with ~9 mg/kg/day Epigallocatechin-3-gallate (EGCG), the main polyphenol found in green tea and putative DYRK1A inhibitor, improved some skeletal deficits. Because EGCG treatment improved mostly trabecular skeletal deficits, we hypothesized that increasing EGCG treatment dosage and length of administration would positively affect both trabecular and cortical bone in Ts65Dn mice. Treatment of individuals with DS with green tea extract (GTE) containing EGCG also showed some weight loss in individuals with DS, and we hypothesized that weights would be affected in Ts65Dn mice after EGCG treatment. Treatment with ~20 mg/kg/day EGCG for seven weeks showed no improvements in male Ts65Dn trabecular bone and only limited improvements in cortical measures. Comparing skeletal analyses after ~20mg/kg/day EGCG treatment with previously published treatments with ~9, 50, and 200 mg/kg/day EGCG showed that increased dosage and treatment time increased cortical structural deficits leading to weaker appendicular bones in male mice. Weight was not affected by treatment in mice, except for those given a high dose of EGCG by oral gavage. These data indicate that high doses of EGCG, similar to those reported in some treatment studies of DS and other disorders, may impair long bone structure and strength. Skeletal phenotypes should be monitored when high doses of EGCG are administered therapeutically.


Asunto(s)
Catequina/análogos & derivados , Síndrome de Down/tratamiento farmacológico , Músculo Esquelético/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Animales , Catequina/administración & dosificación , Catequina/efectos adversos , Catequina/uso terapéutico , Síndrome de Down/metabolismo , Esquema de Medicación , Femenino , Masculino , Ratones , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Quinasas DyrK
16.
Nat Commun ; 13(1): 6384, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289231

RESUMEN

With an incidence of ~1 in 800 births, Down syndrome (DS) is the most common chromosomal condition linked to intellectual disability worldwide. While the genetic basis of DS has been identified as a triplication of chromosome 21 (HSA21), the genes encoded from HSA21 that directly contribute to cognitive deficits remain incompletely understood. Here, we found that the HSA21-encoded chromatin effector, BRWD1, was upregulated in neurons derived from iPS cells from an individual with Down syndrome and brain of trisomic mice. We showed that selective copy number restoration of Brwd1 in trisomic animals rescued deficits in hippocampal LTP, cognition and gene expression. We demonstrated that Brwd1 tightly binds the BAF chromatin remodeling complex, and that increased Brwd1 expression promotes BAF genomic mistargeting. Importantly, Brwd1 renormalization rescued aberrant BAF localization, along with associated changes in chromatin accessibility and gene expression. These findings establish BRWD1 as a key epigenomic mediator of normal neurodevelopment and an important contributor to DS-related phenotypes.


Asunto(s)
Trastornos del Conocimiento , Síndrome de Down , Ratones , Animales , Síndrome de Down/genética , Síndrome de Down/metabolismo , Variaciones en el Número de Copia de ADN/genética , Modelos Animales de Enfermedad , Trastornos del Conocimiento/genética , Cromatina/genética , Ratones Transgénicos
17.
Mamm Genome ; 22(11-12): 685-91, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21953412

RESUMEN

Ts65Dn is a mouse model of Down syndrome: a syndrome that results from chromosome (Chr) 21 trisomy and is associated with congenital defects, cognitive impairment, and ultimately Alzheimer's disease. Ts65Dn mice have segmental trisomy for distal mouse Chr 16, a region sharing conserved synteny with human Chr 21. As a result, this strain harbors three copies of over half of the human Chr 21 orthologs. The trisomic segment of Chr 16 is present as a translocation chromosome (Mmu17(16)), with breakpoints that have not been defined previously. To molecularly characterize the Chrs 16 and 17 breakpoints on the translocation chromosome in Ts65Dn mice, we used a selective enrichment and high-throughput paired-end sequencing approach. Analysis of paired-end reads flanking the Chr 16, Chr 17 junction on Mmu17(16) and de novo assembly of the reads directly spanning the junction provided the precise locations of the Chrs 16 and 17 breakpoints at 84,351,351 and 9,426,822 bp, respectively. These data provide the basis for low-cost, highly efficient genotyping of Ts65Dn mice. More importantly, these data provide, for the first time, complete characterization of gene dosage in Ts65Dn mice.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome de Down/genética , Translocación Genética , Trisomía , Animales , Secuencia de Bases , Síndrome de Down/patología , Femenino , Dosificación de Gen , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Polimorfismo de Nucleótido Simple , Alineación de Secuencia , Análisis de Secuencia de ADN
18.
Bioinformatics ; 26(3): 423-5, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19965882

RESUMEN

SUMMARY: Many online sources of gene interaction networks supply rich visual data regarding gene pathways that can aid in the study of biological processes, disease research and drug discovery. PathGen incorporates data from several sources to create transitive connections that span multiple gene interaction databases. Results are displayed in a comprehensible graphical format, showing gene interaction type and strength, database source and microarray expression data. These features make PathGen a valuable tool for in silico discovery of novel gene interaction pathways, which can be experimentally tested and verified. The usefulness of PathGen interaction analyses was validated using genes connected to the altered facial development related to Down syndrome. AVAILABILITY: http://dna.cs.byu.edu/pathgen. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Further information is available at http://dna.cs.byu.edu/pathgen/PathGenSupplemental.pdf.


Asunto(s)
Biología Computacional/métodos , Redes Reguladoras de Genes/genética , Programas Informáticos , Bases de Datos Genéticas , Expresión Génica , Perfilación de la Expresión Génica/métodos , Genes , Análisis de Secuencia por Matrices de Oligonucleótidos , Saccharomyces cerevisiae/genética
19.
Dev Dyn ; 239(6): 1645-53, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20503361

RESUMEN

Trisomy 21 results in Down syndrome (DS) and causes phenotypes that may result from alterations of developmental processes. The Ts65Dn mouse is the most widely used genetic and phenotypic model for DS. We used over 1,500 offspring from Ts65Dn and two nontrisomic genetically similar control strains to investigate the influence of trisomy on developmental alterations and number of offspring. For the first time, we demonstrate gross developmental attenuation of Ts65Dn trisomic offspring at embryonic day (E) 9.5 and E13.5 and show that the major determinant of the developmental changes is segmental trisomy of the embryo and not the trisomic maternal uterine environment. Maternal alleles of nontrisomic genes linked to Pde6b may also influence the development of Ts65Dn offspring. Both developmental attenuation and the contribution of trisomic and nontrisomic genes are important components in the genesis of DS phenotypes.


Asunto(s)
Síndrome de Down/genética , Trisomía , Animales , Embrión de Mamíferos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo
20.
Genes (Basel) ; 12(11)2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34828335

RESUMEN

Trisomy 21 (Ts21) causes alterations in skeletal development resulting in decreased bone mass, shortened stature and weaker bones in individuals with Down syndrome (DS). There is a sexual dimorphism in bone mineral density (BMD) deficits associated with DS with males displaying earlier deficits than females. The relationships between causative trisomic genes, cellular mechanisms, and influence of sex in DS skeletal abnormalities remain unknown. One hypothesis is that the low bone turnover phenotype observed in DS results from attenuated osteoblast function, contributing to impaired trabecular architecture, altered cortical geometry, and decreased mineralization. DYRK1A, found in three copies in humans with DS, Ts65Dn, and Dp1Tyb DS model mice, has been implicated in the development of postnatal skeletal phenotypes associated with DS. Reduced copy number of Dyrk1a to euploid levels from conception in an otherwise trisomic Ts65Dn mice resulted in a rescue of appendicular bone deficits, suggesting DYRK1A contributes to skeletal development and homeostasis. We hypothesized that reduction of Dyrk1a copy number in trisomic osteoblasts would improve cellular function and resultant skeletal structural anomalies in trisomic mice. Female mice with a floxed Dyrk1a gene (Ts65Dn,Dyrk1afl/wt) were mated with male Osx-Cre+ (expressed in osteoblasts beginning around E13.5) mice, resulting in reduced Dyrk1a copy number in mature osteoblasts in Ts65Dn,Dyrk1a+/+/Osx-Cre P42 male and female trisomic and euploid mice, compared with littermate controls. Male and female Ts65Dn,Dyrk1a+/+/+ (3 copies of DYRK1A in osteoblasts) and Ts65Dn,Dyrk1a+/+/Osx-Cre (2 copies of Dyrk1a in osteoblasts) displayed similar defects in both trabecular architecture and cortical geometry, with no improvements with reduced Dyrk1a in osteoblasts. This suggests that trisomic DYRK1A does not affect osteoblast function in a cell-autonomous manner at or before P42. Although male Dp1Tyb and Ts65Dn mice exhibit similar skeletal deficits at P42 in both trabecular and cortical bone compartments between euploid and trisomic mice, female Ts65Dn mice exhibit significant cortical and trabecular deficits at P42, in contrast to an absence of genotype effect in female Dp1Tyb mice in trabecular bone. Taken together, these data suggest skeletal deficits in DS mouse models and are sex and age dependent, and influenced by strain effects, but are not solely caused by the overexpression of Dyrk1a in osteoblasts. Identifying molecular and cellular mechanisms, disrupted by gene dosage imbalance, that are involved in the development of skeletal phenotypes associated with DS could help to design therapies to rescue skeletal deficiencies seen in DS.


Asunto(s)
Síndrome de Down/fisiopatología , Músculo Esquelético/fisiopatología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Animales , Densidad Ósea , Modelos Animales de Enfermedad , Síndrome de Down/genética , Femenino , Dosificación de Gen , Expresión Génica , Masculino , Ratones , Músculo Esquelético/diagnóstico por imagen , Osteoblastos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Caracteres Sexuales , Microtomografía por Rayos X , Quinasas DyrK
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA