Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Pathol ; 261(4): 385-400, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37772431

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) are characterised by a spectrum of structural and histologic abnormalities and are the major cause of childhood kidney failure. During kidney morphogenesis, the formation of a critical number of nephrons is an embryonic process supported, in part, by signalling between nephrogenic precursors and Foxd1-positive stromal progenitor cells. Low nephron number and abnormal patterning of the stroma are signature pathological features among CAKUT phenotypes with decreased kidney function. Despite their critical contribution to CAKUT pathogenesis, the mechanisms that underlie a low nephron number and the functional contribution of a disorganised renal stroma to nephron number are both poorly defined. Here, we identify a primary pathogenic role for increased Hedgehog signalling in embryonic renal stroma in the genesis of congenital low nephron number. Pharmacologic activation of Hedgehog (Hh) signalling in human kidney organoid tissue decreased the number of nephrons and generated excess stroma. The mechanisms underlying these pathogenic effects were delineated in genetic mouse models in which Hh signalling was constitutively activated in a cell lineage-specific manner. Cre-mediated excision of Ptch1 in Foxd1+ stromal progenitor cells, but not in Six2+ nephrogenic precursor cells, generated kidney malformation, identifying the stroma as a driver of low nephron number. Single-cell RNA sequencing analysis identified Cxcl12 and Wnt5a as downstream targets of increased stromal Hh signalling, findings supported by analysis in human kidney organoids. In vivo deficiency of Cxcl12 or Wnt5a in mice with increased stromal Hh signalling improved nephron endowment. These results demonstrate that dysregulated Hh signalling in embryonic renal stromal cells inhibits nephron formation in a manner dependent on Cxcl12 and Wnt5a. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Proteínas Hedgehog , Riñón , Ratones , Humanos , Animales , Proteínas Hedgehog/genética , Diferenciación Celular , Riñón/anomalías , Nefronas
2.
Development ; 147(3)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31932349

RESUMEN

Cerebellar granule cell (GC) development relies on precise regulation of sonic hedgehog (Shh)-Gli signalling activity, failure of which is associated with motor disorders and medulloblastoma. Mutations in the pathway regulator suppressor of fused (Sufu), which modulates Gli activators and repressors, are linked to cerebellar dysfunction and tumourigenesis. The mechanism by which Sufu calibrates Shh signalling in GCs is unknown. Math1-Cre-mediated deletion of Sufu in mouse GC progenitors (GCPs) demonstrated that Sufu restricts GCP proliferation and promotes cell cycle exit, by promoting expression of Gli3R and suppressing Gli2 levels. Sufu is also required to promote a high threshold of pathway activity in GCPs. Remarkably, central cerebellar lobules are more deleteriously impacted by Sufu deletion, but are less sensitive to downstream genetic manipulations to reduce Gli2 expression or overexpress a Gli3R mimic, compared with anterior lobules. Transcriptome sequencing uncovered new Sufu targets, especially Fgf8, which is upregulated in Sufu-mutant GCPs. We demonstrate that Fgf8 is necessary and sufficient to drive Sufu-mutant GCP proliferation. This study reveals new insights into the spatial and temporal regulation of cerebellar Shh-Gli signalling, while uncovering new targets, such as Fgf8.


Asunto(s)
Proliferación Celular/genética , Cerebelo/citología , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Proteína Gli2 con Dedos de Zinc/metabolismo , Proteína Gli3 con Dedos de Zinc/metabolismo , Animales , Ciclo Celular/genética , Cerebelo/crecimiento & desarrollo , Femenino , Factor 8 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Represoras/genética , Transducción de Señal/genética , Transcriptoma , Proteína Gli2 con Dedos de Zinc/genética , Proteína Gli3 con Dedos de Zinc/genética
3.
Am J Med Genet C Semin Med Genet ; 190(3): 264-278, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36165461

RESUMEN

Pallister-Hall syndrome (PHS) is a rare autosomal dominant disease diagnosed by the presence of hypothalamic hamartoma, mesoaxial polydactyly and a truncating variant in the middle third of the GLI-Kruppel family member 3 (GLI3) gene. PHS may also include a wide range of clinical phenotypes affecting multiple organ systems including congenital anomalies of the kidney and urinary tract (CAKUT). The observed clinical phenotypes are consistent with the essential role of GLI3, a transcriptional effector in the hedgehog (Hh) signaling pathway, in organogenesis. However, the mechanisms by which truncation of GLI3 in PHS results in such a variety of clinical phenotypes with variable severity, even within the same organ, remain unclear. In this study we focus on presentation of CAKUT in PHS. A systematic analysis of reported PHS patients (n = 78) revealed a prevalence of 26.9% (21/78) of CAKUT. Hypoplasia (± dysplasia) and agenesis were the two main types of CAKUT; bilateral and unilateral CAKUT were reported with equal frequency. Examination of clinical phenotypes with CAKUT revealed a significant association between CAKUT and craniofacial defects, bifid epiglottis and a Disorder of Sex Development, specifically affecting external genitalia. Lastly, we determined that PHS patients with CAKUT predominately had substitution type variants (as opposed to deletion type variants in non-CAKUT PHS patients) in the middle third of the GLI3 gene. These results provide a foundation for future work aimed at uncovering the molecular mechanisms by which variant GLI3 result in the wide range and severity of clinical features observed in PHS.


Asunto(s)
Anomalías Múltiples , Síndrome de Pallister-Hall , Sistema Urinario , Humanos , Síndrome de Pallister-Hall/diagnóstico , Síndrome de Pallister-Hall/genética , Proteína Gli3 con Dedos de Zinc/genética , Factores de Transcripción de Tipo Kruppel/genética , Anomalías Múltiples/genética , Proteínas del Tejido Nervioso/genética , Proteínas Hedgehog , Riñón
4.
Development ; 145(13)2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29945868

RESUMEN

Normal kidney function depends on the proper development of the nephron: the functional unit of the kidney. Reciprocal signaling interactions between the stroma and nephron progenitor compartment have been proposed to control nephron development. Here, we show that removal of hedgehog intracellular effector smoothened (Smo-deficient mutants) in the cortical stroma results in an abnormal renal capsule, and an expanded nephron progenitor domain with an accompanying decrease in nephron number via a block in epithelialization. We show that stromal-hedgehog-Smo signaling acts through a GLI3 repressor. Whole-kidney RNA sequencing and analysis of FACS-isolated stromal cells identified impaired TGFß2 signaling in Smo-deficient mutants. We show that neutralization and knockdown of TGFß2 in explants inhibited nephrogenesis. In addition, we demonstrate that concurrent deletion of Tgfbr2 in stromal and nephrogenic cells in vivo results in decreased nephron formation and an expanded nephrogenic precursor domain similar to that observed in Smo-deficient mutant mice. Together, our data suggest a mechanism whereby a stromal hedgehog-TGFß2 signaling axis acts to control nephrogenesis.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Proteínas Hedgehog/metabolismo , Nefronas/embriología , Transducción de Señal/fisiología , Receptor Smoothened/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Animales , Factores de Transcripción Forkhead/genética , Proteínas Hedgehog/genética , Ratones , Ratones Noqueados , Nefronas/citología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptor Smoothened/genética , Células del Estroma/citología , Células del Estroma/metabolismo , Factor de Crecimiento Transformador beta2/genética , Proteína Gli3 con Dedos de Zinc/genética , Proteína Gli3 con Dedos de Zinc/metabolismo
5.
Pediatr Nephrol ; 36(7): 1663-1672, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32880018

RESUMEN

Aberrant transforming growth factor beta (TGFß) signaling during embryogenesis is implicated in severe congenital abnormalities, including kidney malformations. However, the molecular mechanisms that underlie congenital kidney malformations related to TGFß signaling remain poorly understood. Here, we review current understanding of the lineage-specific roles of TGFß signaling during kidney development and how dysregulation of TGFß signaling contributes to the pathogenesis of kidney malformation.


Asunto(s)
Factor de Crecimiento Transformador beta , Anomalías Urogenitales , Animales , Humanos , Riñón , Organogénesis , Transducción de Señal , Factor de Crecimiento Transformador beta1
6.
Pediatr Res ; 87(4): 647-655, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31629364

RESUMEN

BACKGROUND: Human induced pluripotent stem cells (iPSCs) are a promising tool to investigate pathogenic mechanisms underlying human genetic conditions, such as congenital anomalies of the kidney and urinary tract (CAKUT). Currently, iPSC-based research in pediatrics is limited by the invasiveness of cell collection. METHODS: Urine cells (UCs) were isolated from pediatric urine specimens, including bag collections, and reprogrammed using episomal vectors into urinary iPSCs (UiPSCs). Following iPSC-quality assessment, human kidney organoids were generated. RESULTS: UCs were isolated from 71% (12/17) of single, remnant urine samples obtained in an outpatient setting (patients 1 month-17 years, volumes 10-75 ml). Three independent UCs were reprogrammed to UiPSCs with early episome loss, confirmed pluripotency and normal karyotyping. Subsequently, these UiPSCs were successfully differentiated into kidney organoids, closely resembling organoids generated from control fibroblast-derived iPSCs. Importantly, under research conditions with immediate sample processing, UC isolation was successful 100% for target pediatric CAKUT patients and controls (11/11) after at most two urine collections. CONCLUSIONS: Urine in small volumes or collected in bags is a reliable source for reprogrammable somatic cells that can be utilized to generate kidney organoids. This constitutes an attractive approach for patient-specific iPSC research involving infants and children with wide applicability and a low threshold for participation.


Asunto(s)
Separación Celular , Células Madre Pluripotentes Inducidas/patología , Riñón/patología , Organoides/patología , Anomalías Urogenitales/patología , Reflujo Vesicoureteral/patología , Adolescente , Estudios de Casos y Controles , Proliferación Celular , Células Cultivadas , Reprogramación Celular , Técnicas de Reprogramación Celular , Niño , Preescolar , Estudios de Factibilidad , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lactante , Riñón/metabolismo , Masculino , Organoides/metabolismo , Fenotipo , Orina/citología , Anomalías Urogenitales/genética , Anomalías Urogenitales/metabolismo , Reflujo Vesicoureteral/genética , Reflujo Vesicoureteral/metabolismo
7.
Pediatr Nephrol ; 35(5): 725-731, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-30923969

RESUMEN

Aberrant hedgehog (Hh) signaling during embryogenesis results in various severe congenital abnormalities, including renal malformations. The molecular mechanisms that underlie congenital renal malformations remain poorly understood. Here, we review the current understanding of the lineage-specific roles of Hh signaling during renal morphogenesis and how aberrant Hh signaling during embryonic kidney development contributes to renal malformation.


Asunto(s)
Desarrollo Embrionario/genética , Proteínas Hedgehog/metabolismo , Riñón/embriología , Transducción de Señal/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Animales , Linaje de la Célula/genética , Embrión de Mamíferos/anomalías , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Humanos , Riñón/anomalías , Riñón/citología , Ratones , Modelos Animales , Mutación , Proteína con Dedos de Zinc GLI1/genética
8.
J Am Soc Nephrol ; 29(4): 1198-1209, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29436516

RESUMEN

Nonobstructive hydronephrosis, defined as dilatation of the renal pelvis with or without dilatation of the ureter, is the most common antenatal abnormality detected by fetal ultrasound. Yet, the etiology of nonobstructive hydronephrosis is poorly defined. We previously demonstrated that defective development of urinary tract pacemaker cells (utPMCs) expressing hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3) and the stem cell marker cKIT causes abnormal ureteric peristalsis and nonobstructive hydronephrosis. However, further investigation of utPMC development and function is limited by lack of knowledge regarding the embryonic derivation, development, and molecular apparatus of these cells. Here, we used lineage tracing in mice to identify cells that give rise to utPMCs. Neural crest cells (NCCs) indelibly labeled with tdTomato expressed HCN3 and cKIT. Furthermore, purified HCN3+ and cKIT+ utPMCs were enriched in Sox10 and Tfap-2α, markers of NCCs. Sequencing of purified RNA from HCN3+ cells revealed enrichment of a small subset of RNAs, including RNA encoding protein kinase 2ß (PTK2ß), a Ca2+-dependent tyrosine kinase that regulates ion channel activity in neurons. Immunofluorescence analysis in situ revealed PTK2ß expression in NCCs as early as embryonic day 12.5 and in HCN3+ and cKIT+ utPMCs as early as embryonic day 15.5, with sustained expression in HCN3+ utPMCs until postnatal week 8. Pharmacologic inhibition of PTK2ß in murine pyeloureteral tissue explants inhibited contraction frequency. Together, these results demonstrate that utPMCs are derived from NCCs, identify new markers of utPMCs, and demonstrate a functional contribution of PTK2ß to utPMC function.


Asunto(s)
Quinasa 2 de Adhesión Focal/fisiología , Regulación del Desarrollo de la Expresión Génica , Células Intersticiales de Cajal/enzimología , Pelvis Renal/fisiología , Cresta Neural/enzimología , Peristaltismo/fisiología , Uréter/fisiología , Animales , Antígenos de Diferenciación/análisis , Quinasa 2 de Adhesión Focal/biosíntesis , Quinasa 2 de Adhesión Focal/genética , Genes Reporteros , Edad Gestacional , Hidronefrosis/enzimología , Hidronefrosis/fisiopatología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/análisis , Células Intersticiales de Cajal/fisiología , Pelvis Renal/citología , Pelvis Renal/embriología , Pelvis Renal/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Cresta Neural/fisiología , Canales de Potasio/análisis , Proteínas Proto-Oncogénicas c-kit/análisis , ARN Mensajero/biosíntesis , Factores de Transcripción SOXE/análisis , Transducción de Señal , Factor de Transcripción AP-2/análisis , Uréter/citología , Uréter/embriología , Uréter/crecimiento & desarrollo
9.
J Am Soc Nephrol ; 29(2): 532-544, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29109083

RESUMEN

Intrinsic ureteropelvic junction obstruction is the most common cause of congenital hydronephrosis, yet the underlying pathogenesis is undefined. Hedgehog proteins control morphogenesis by promoting GLI-dependent transcriptional activation and inhibiting the formation of the GLI3 transcriptional repressor. Hedgehog regulates differentiation and proliferation of ureteric smooth muscle progenitor cells during murine kidney-ureter development. Histopathologic findings of smooth muscle cell hypertrophy and stroma-like cells, consistently observed in obstructing tissue at the time of surgical correction, suggest that Hedgehog signaling is abnormally regulated during the genesis of congenital intrinsic ureteropelvic junction obstruction. Here, we demonstrate that constitutively active Hedgehog signaling in murine intermediate mesoderm-derived renal progenitors results in hydronephrosis and failure to develop a patent pelvic-ureteric junction. Tissue obstructing the ureteropelvic junction was marked as early as E13.5 by an ectopic population of cells expressing Ptch2, a Hedgehog signaling target. Constitutive expression of GLI3 repressor in Ptch1-deficient mice rescued ectopic Ptch2 expression and obstructive hydronephrosis. Whole transcriptome analysis of isolated Ptch2+ cells revealed coexpression of genes characteristic of stromal progenitor cells. Genetic lineage tracing indicated that stromal cells blocking the ureteropelvic junction were derived from intermediate mesoderm-derived renal progenitors and were distinct from the smooth muscle or epithelial lineages. Analysis of obstructive ureteric tissue resected from children with congenital intrinsic ureteropelvic junction obstruction revealed a molecular signature similar to that observed in Ptch1-deficient mice. Together, these results demonstrate a Hedgehog-dependent mechanism underlying mammalian intrinsic ureteropelvic junction obstruction.


Asunto(s)
Proteínas Hedgehog/genética , Hidronefrosis/genética , Proteínas del Tejido Nervioso/genética , Receptor Patched-1/genética , Receptor Patched-2/genética , Transducción de Señal , Obstrucción Ureteral/genética , Proteína Gli3 con Dedos de Zinc/genética , Aldehído Oxidorreductasas/genética , Animales , Linaje de la Célula , Niño , Femenino , Factores de Transcripción Forkhead/genética , Expresión Génica , Proteínas Hedgehog/metabolismo , Humanos , Hidronefrosis/congénito , Hidronefrosis/patología , Hibridación in Situ , Pelvis Renal/embriología , Pelvis Renal/metabolismo , Masculino , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Células Madre/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Transcriptoma , Regulación hacia Arriba , Uréter/embriología , Uréter/metabolismo , Obstrucción Ureteral/congénito , Obstrucción Ureteral/patología , Proteína Gli3 con Dedos de Zinc/metabolismo
10.
Dev Dyn ; 247(1): 156-169, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28560839

RESUMEN

BACKGROUND: Deficiency of Suppressor of Fused (SuFu), an intracellular mediator of Hedgehog signaling, in the murine mid-hindbrain disrupts cerebellar morphogenesis and cell differentiation in a manner that is rescued by constitutive expression of GLI3 transcriptional repressor (GLI3R). Here, we determined SuFu functions in cerebellar radial precursors following the stage of mid-hindbrain specification using a Blbp-Cre transgene. RESULTS: SuFu-deficient cerebella were severely dysplastic, and characterized by laminar disorganization, and delayed differentiation of ventricular zone-derived precursors. In vitro analysis of cerebellar precursors isolated from control and mutant mice demonstrated an increased proportion of radial glial precursors vs. Tuj1-positive neurons in mutant cultures. Abnormal cell differentiation in SuFu-deficient precursors was rescued by a constitutively expressed GLI3R knock-in allele, albeit with variable penetrance. Using RNA expression analysis in control and SuFu-deficient cerebellar anlage, we identified up-regulation of Fgf15 in mutant tissue. Strikingly, exogenous hFGF19, a mFGF15 ortholog, inhibited neuronal differentiation in cultures of wild-type cerebellar precursors. Moreover, siRNA-mediated knockdown of Fgf15 in SuFu-deficient cerebellar precursors rescued their delayed differentiation to neurons. CONCLUSIONS: Together, our results show that SuFu promotes cerebellar radial precursor differentiation to neurons. SuFu function is mediated in part by GLI3R and down-regulation of Fgf15 expression. Developmental Dynamics 247:156-169, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Diferenciación Celular/fisiología , Cerebelo/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Proteína Gli3 con Dedos de Zinc/metabolismo , Animales , Cerebelo/citología , Regulación hacia Abajo , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Ratones , Ratones Transgénicos , Neurogénesis/fisiología , Neuronas/citología , ARN Interferente Pequeño , Transducción de Señal/fisiología
11.
Hum Mol Genet ; 25(3): 437-47, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26604140

RESUMEN

Pallister-Hall syndrome (PHS) is a rare disorder caused by mutations in GLI3 that produce a transcriptional repressor (GLI3R). Individuals with PHS present with a variably penetrant variety of urogenital system malformations, including renal aplasia or hypoplasia, hydroureter, hydronephrosis or a common urogenital sinus. The embryologic mechanisms controlled by GLI3R that result in these pathologic phenotypes are undefined. We demonstrate that germline expression of GLI3R causes renal hypoplasia, associated with decreased nephron number, and hydroureter and hydronephrosis, caused by blind-ending ureters. Mice with obligate GLI3R expression also displayed duplication of the ureters that was caused by aberrant common nephric duct patterning and ureteric stalk outgrowth. These developmental abnormalities are associated with suppressed Hedgehog signaling activity in the cloaca and adjacent vesicular mesenchyme. Mice with conditional expression of GLI3R were utilized to identify lineage-specific effects of GLI3R. In the ureteric bud, GLI3R expression decreased branching morphogenesis. In Six2-positive nephrogenic progenitors, GLI3R decreased progenitor cell proliferation reducing the number of nephrogenic precursor structures. Using mutant mice with Gli3R and Gli3 null alleles, we demonstrate that urogenital system patterning and development is controlled by the levels of GLI3R and not by an absence of full-length GLI3. We conclude that the urogenital system phenotypes observed in PHS are caused by GLI3R-dependent perturbations in nephric duct patterning, renal branching morphogenesis and nephrogenic progenitor self-renewal.


Asunto(s)
Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica , Hidronefrosis/genética , Riñón/anomalías , Factores de Transcripción de Tipo Kruppel/genética , Proteínas del Tejido Nervioso/genética , Síndrome de Pallister-Hall/genética , Anomalías Urogenitales/genética , Animales , Tipificación del Cuerpo/genética , Proliferación Celular , Modelos Animales de Enfermedad , Embrión de Mamíferos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Hidronefrosis/metabolismo , Hidronefrosis/patología , Riñón/metabolismo , Riñón/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Noqueados , Mutación , Nefronas/anomalías , Nefronas/embriología , Nefronas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Síndrome de Pallister-Hall/metabolismo , Síndrome de Pallister-Hall/patología , Fenotipo , Transducción de Señal , Células Madre/metabolismo , Células Madre/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Uréter/anomalías , Uréter/embriología , Uréter/metabolismo , Anomalías Urogenitales/metabolismo , Anomalías Urogenitales/patología , Proteína Gli3 con Dedos de Zinc
12.
Med Educ ; 52(5): 536-545, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29532953

RESUMEN

CONTEXT: MD/PhD programmes provide structured paths for physician-scientist training. However, considerable proportions of graduates of these programmes do not pursue careers in research consistent with their training. OBJECTIVES: We sought to identify factors associated with sustained involvement in research after completion of all postgraduate training. METHODS: Anonymised data from a national survey of Canadian MD/PhD programme graduates who had completed all physician-scientist training (n = 70) were analysed. Multivariable logistic regression was used to measure the associations between characteristics of graduates and five indicators of sustained research involvement following postgraduate training: (i) protected research time in the current appointment; (ii) percentage of time dedicated to research; (iii) planned future involvement in research; (iv) role as a principal investigator on a recent funded project, and (v) receipt of funding from a federal granting agency since graduation. RESULTS: The majority of graduates were significantly involved in research on the basis of at least one outcome. Completion of a research fellowship, number of first-authored or co-authored manuscripts published during MD/PhD training, and duration of MD/PhD training were positively associated with continued research involvement. Completion of a Masters degree prior to MD/PhD training, female gender, debt greater than CAD$50 000 at completion of training, and pursuit of a clinical specialty other than internal medicine, paediatrics, neurology, pathology and the surgical specialties were negatively associated with sustained research involvement. CONCLUSIONS: Most MD/PhD programme graduates remain significantly involved in research, but this involvement often does not correspond to traditional physician-scientist roles, in which a majority of time is dedicated to research. To minimise loss of investment in physician-scientist training, MD/PhD programmes should prioritise research productivity during training and the pursuit of additional research training during residency, and policymakers should establish stable sources of funding to reduce debt among graduates. Our data suggest further study is warranted to identify interventions to reduce attrition among female MD/PhD programme graduates.


Asunto(s)
Investigación Biomédica/educación , Selección de Profesión , Educación de Postgrado en Medicina , Internado y Residencia/estadística & datos numéricos , Médicos/estadística & datos numéricos , Apoyo a la Formación Profesional/estadística & datos numéricos , Canadá , Femenino , Humanos , Masculino
14.
15.
J Am Soc Nephrol ; 27(5): 1465-77, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26407593

RESUMEN

Integrin-linked kinase (ILK) is an intracellular scaffold protein with critical cell-specific functions in the embryonic and mature mammalian kidney. Previously, we demonstrated a requirement for Ilk during ureteric branching and cell cycle regulation in collecting duct cells in vivo Although in vitro data indicate that ILK controls p38 mitogen-activated protein kinase (p38MAPK) activity, the contribution of ILK-p38MAPK signaling to branching morphogenesis in vivo is not defined. Here, we identified genes that are regulated by Ilk in ureteric cells using a whole-genome expression analysis of whole-kidney mRNA in mice with Ilk deficiency in the ureteric cell lineage. Six genes with expression in ureteric tip cells, including Wnt11, were downregulated, whereas the expression of dual-specificity phosphatase 8 (DUSP8) was upregulated. Phosphorylation of p38MAPK was decreased in kidney tissue with Ilk deficiency, but no significant decrease in the phosphorylation of other intracellular effectors previously shown to control renal morphogenesis was observed. Pharmacologic inhibition of p38MAPK activity in murine inner medullary collecting duct 3 (mIMCD3) cells decreased expression of Wnt11, Krt23, and Slo4c1 DUSP8 overexpression in mIMCD3 cells significantly inhibited p38MAPK activation and the expression of Wnt11 and Slo4c1. Adenovirus-mediated overexpression of DUSP8 in cultured embryonic murine kidneys decreased ureteric branching and p38MAPK activation. Together, these data demonstrate that Ilk controls branching morphogenesis by regulating the expression of DUSP8, which inhibits p38MAPK activity and decreases branching morphogenesis.


Asunto(s)
Fosfatasas de Especificidad Dual/fisiología , Riñón/embriología , Riñón/enzimología , Morfogénesis , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Ratones , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
16.
Semin Cell Dev Biol ; 36: 2-12, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25080023

RESUMEN

The human kidney is composed of an arborized network of collecting ducts, calyces and urinary pelvis that facilitate urine excretion and regulate urine composition. The renal collecting system is formed in utero, completed by the 34th week of gestation in humans, and dictates final nephron complement. The renal collecting system arises from the ureteric bud, a derivative of the intermediate-mesoderm derived nephric duct that responds to inductive signals from adjacent tissues via a process termed ureteric induction. The ureteric bud subsequently undergoes a series of iterative branching and remodeling events in a process called renal branching morphogenesis. Altered signaling that disrupts patterning of the nephric duct, ureteric induction, or renal branching morphogenesis leads to varied malformations of the renal collecting system collectively known as congenital anomalies of the kidney and urinary tract (CAKUT) and is the most frequently detected congenital renal aberration in infants. Here, we describe critical morphogenetic and cellular events that govern nephric duct specification, ureteric bud induction, renal branching morphogenesis, and cessation of renal branching morphogenesis. We also highlight salient molecular signaling pathways that govern these processes, and the investigative techniques used to interrogate them.


Asunto(s)
Riñón/embriología , Uréter/embriología , Regulación del Desarrollo de la Expresión Génica , Humanos , Morfogénesis , Transducción de Señal , Anomalías Urogenitales , Reflujo Vesicoureteral
17.
J Transl Med ; 14(1): 329, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27899114

RESUMEN

End goal of translational medicine is to combine disciplines and expertise to eventually promote improvement of the global healthcare system by delivering effective therapies to individuals and society. Well-trained experts of the translational medicine process endowed with profound knowledge of biomedical technology, ethical and clinical issues, as well as leadership and teamwork abilities are essential for the effective development of tangible therapeutic products for patients. In this article we focus on education and, in particular, we discuss how programs providing training on the broad spectrum of the translational medicine continuum have still a limited degree of diffusion and do not provide professional support and mentorship in the long-term, resulting in the lack of well established professionals of translational medicine (TMPs) in the scientific community. Here, we describe the Marie Sklodowska-Curie Actions program ITN-EUtrain (EUropean Translational tRaining for Autoimmunity & Immune manipulation Network) where training on the Translational Medicine machinery was integrated with education on professional and personal skills, mentoring, and a long-lasting network of TMPs.


Asunto(s)
Modelos Educacionales , Investigación Biomédica Traslacional/educación , Humanos , Recursos Humanos
18.
Clin Invest Med ; 39(4): E140-1, 2016 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-27619401

RESUMEN

The paper by Jones and colleagues, published in this edition of Clinical Investigative Medicine, contributes to our understanding of Canadian MD/PhD Programs. While there has been little published on this subject by the Canadian programs, themselves, this paper is the most recent in a series by leaders of the Clinical Investigator Trainee Association of Canada (CITAC). The authors are to be commended for their efforts and productivity.


Asunto(s)
Investigación Biomédica , Investigadores , Canadá , Humanos , Apoyo a la Formación Profesional
19.
Am J Pathol ; 184(5): 1395-410, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24637293

RESUMEN

Renal dysplasia, a developmental disorder characterized by defective ureteric branching morphogenesis and nephrogenesis, ranks as one of the major causes of renal failure among the pediatric population. Herein, we demonstrate that the levels of activated ß-catenin are elevated in the nuclei of ureteric, stromal, and mesenchymal cells within dysplastic human kidney tissue. By using a conditional mouse model of mesenchymal ß-catenin overexpression, we identify two novel signaling pathways mediated by ß-catenin in the development of renal dysplasia. First, the overexpression of ß-catenin within the metanephric mesenchyme leads to ectopic and disorganized branching morphogenesis caused by ß-catenin directly binding Tcf/lef consensus binding sites in the Gdnf promoter and up-regulating Gdnf transcription. Second, ß-catenin overexpression in the metanephric mesenchyme leads to elevated levels of transcriptionally active ß-catenin in the ureteric epithelium. Interestingly, this increase of ß-catenin-mediated transcription results from a novel Ret/ß-catenin signaling pathway. Consistent with these findings, analysis of human dysplastic renal tissue demonstrates that undifferentiated mesenchymal cells expressing high levels of ß-catenin also express increased GDNF. Furthermore, dysplastic ureteric tubules that were surrounded by high levels of GDNF also exhibited increased levels of activated ß-catenin. Together, these data support a model in which the elevation of ß-catenin in the metanephric mesenchyme results in cell-autonomous and non-cell-autonomous events that lead to the genesis of renal dysplasia.


Asunto(s)
Enfermedades Renales/patología , Riñón/anomalías , Riñón/patología , Mesodermo/metabolismo , Mesodermo/patología , beta Catenina/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Células HEK293 , Humanos , Riñón/embriología , Enfermedades Renales/metabolismo , Masculino , Ratones , Modelos Biológicos , Morfogénesis , Mutación , Proteínas Proto-Oncogénicas c-ret/metabolismo , Transducción de Señal , Transcripción Genética , Proteínas Wnt/metabolismo
20.
Dev Dyn ; 243(7): 853-63, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24687874

RESUMEN

The kidney is a model developmental paradigm of vertebrate organogenesis. As in many other organs, kidney development involves reciprocal inductive tissue interactions between multiple cell lineages. The most well defined of these interactions occurs between the ureteric bud and the nephrogenic mesenchyme. A population of mesenchymal cells distinct from nephrogenic precursors and termed stromal cells, have been relatively understudied. Yet existing knowledge indicates that stromal cells are critical regulators in the normal and diseased kidney. This commentary reviews current knowledge regarding the origin and functional roles of the stromal cell population during kidney development. Gaps in our current understanding of renal stromal cells and future directions needed to advance this expanding field of study are highlighted.


Asunto(s)
Riñón/citología , Riñón/metabolismo , Células del Estroma/citología , Células del Estroma/fisiología , Animales , Regulación del Desarrollo de la Expresión Génica , Enfermedades Renales/patología , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA