Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38475247

RESUMEN

In today's competitive landscape, manufacturing companies must embrace digital transformation. This study asserts that integrating Internet of Things (IoT) technologies for the deployment of real-time location systems (RTLS) is crucial for better monitoring of critical assets. Despite the challenge of selecting the right technology for specific needs from a wide range of indoor RTLS options, this study provides a solution to assist manufacturing companies in exploring and implementing IoT technologies for their RTLS needs. The current academic literature has not adequately addressed this industrial reality. This paper assesses the potential of Passive UHF RFID-RTLS in Industry 5.0, addressing the confusion caused by the emergence of new 'passive' RFID solutions that compete with established 'active' solutions. Our research aims to clarify the real-world performance of passive RTLS solutions and propose an updated classification of RTLS systems in the academic literature. We have thoroughly reviewed both the academic and industry literature to remain up to date with the latest market advancements. Passive UHF RFID has been proven to be a valuable addition to the RTLS domain, capable of addressing certain challenges. This has been demonstrated through the successful implementation in two industrial sites, each with different types of tagged objects.

2.
Sensors (Basel) ; 18(12)2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30558323

RESUMEN

With the exponential increase of Internet of things (IoT) connected devices, important security risks are raised as any device could be used as an attack channel. This preoccupation is particularly important with devices featuring limited processing power and memory capabilities for security purposes. In line with this idea, Xu et al. (2018) proposed a lightweight Radio Frequency Identification (RFID) mutual authentication protocol based on Physical Unclonable Function (PUF)-ensuring mutual tag-reader verification and preventing clone attacks. While Xu et al. claim that their security protocol is efficient to protect RFID systems, we found it still vulnerable to a desynchronization attack and to a secret disclosure attack. Hence, guidelines for the improvements to the protocol are also suggested, for instance by changing the structure of the messages to avoid trivial attacks. In addition, we provide an explicit protocol for which our formal and informal security analysis have found no weaknesses.

3.
Comput Netw ; 181: 107558, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-35023996

RESUMEN

Nowadays the sharing of trade in counterfeit and pirated goods is constantly growing and fake products are found in a large number of industries - particularly pharmaceuticals, food, and medical equipment - that can pose serious health and safety risks. With the intention of avoiding any loss of client confidence and any disclosure of sensitive information, Internet of Things (IoT) solutions are increasingly used to fulfill this need for a reliable and secure infrastructure in medical & pharmaceutical industry. When looking at the technologies used to identify products and packaging, balancing security and hardware limitations is often a difficult task and using cost-effective techniques such as bit-oriented lightweight functions is a challenge. In this study, we first assess the security level of a recently proposed protocol and prove its vulnerabilities, due to a lack of complexity in bit-oriented functions. Then, to address these exposed flaws, a lightweight improved protocol based on Authenticated Encryption (AE) cryptosystems is presented. Security analysis results demonstrate that weaknesses of previous efforts have all been adequately addressed; additionally, the improved protocol has a robust security posture in terms of confidentiality and integrity. Moreover, FPGA and ASIC simulations are carried out using five different AE schemes from CAESAR competition to develop three use-cases, in whose best scenario the proposed tag has 731 LUT and needs 3335 gates for the security module.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA