Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Insect Mol Biol ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676396

RESUMEN

The western flower thrips, Frankliniella occidentalis, poses a significant challenge in global agriculture as a notorious pest and a vector of economically significant orthotospoviruses. However, the limited availability of genetic tools for F. occidentalis hampers the advancement of functional genomics and the development of innovative pest control strategies. In this study, we present a robust methodology for generating heritable mutations in F. occidentalis using the CRISPR/Cas9 genome editing system. Two eye-colour genes, white (Fo-w) and cinnabar (Fo-cn), frequently used to assess Cas9 function in insects were identified in the F. occidentalis genome and targeted for knockout through embryonic microinjection of Cas9 complexed with Fo-w or Fo-cn specific guide RNAs. Homozygous Fo-w and Fo-cn knockout lines were established by crossing mutant females and males. The Fo-w knockout line revealed an age-dependent modification of eye-colour phenotype. Specifically, while young larvae exhibit orange-coloured eyes, the colour transitions to bright red as they age. Unexpectedly, loss of Fo-w function also altered body colour, with Fo-w mutants having a lighter coloured body than wild type, suggesting a dual role for Fo-w in thrips. In contrast, individuals from the Fo-cn knockout line consistently displayed bright red eyes throughout all life stages. Molecular analyses validated precise editing of both target genes. This study offers a powerful tool to investigate thrips gene function and paves the way for the development of genetic technologies for population suppression and/or population replacement as a means of mitigating virus transmission by this vector.

2.
Plant Dis ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115953

RESUMEN

Impatiens necrotic spot virus (INSV) (Orthotospovirus impatiensnecromaculae) is a virus in the Order Bunyavirales and Family Tospoviridae. The virus is vectored by several species of thrips and is a serious pathogen of ornamentals and lettuce in the United States (Hasegawa & Del Pozo-Valdivia 2023; Daughtrey, M. L., et al. 1997; Webster, C. G., et al. 2015). In January 2023, tomato plants (Solanum lycopersicum,'Big Dena') with viral symptoms of reduced vigor, wilting, necrotic spots on leaves, and sunken lesions on the stem were observed in one greenhouse in Guilford County, North Carolina (NC) (Figure 1A-C). Disease incidence was low (2%), with only three symptomatic plants in the single greenhouse. Affected plants also had signs of thrips feeding (dead thrips, frass, and feeding scars) present across the whole plant (Figure 1D). Samples were submitted to the NC State Plant Disease and Insect Clinic and tested positive for INSV, but negative for TSWV, using Agdia ImmunoStrips®. RNA was extracted from symptomatic leaf tissue using the IBI Total RNA Mini kit (Plant), and complementary DNA (cDNA) was generated using the ThermoFisher Verso cDNA synthesis kit. A reverse transcriptase (RT)-PCR with INSV nucleocapsid (N) primers (F:5'-ATGAACAAAGCAAAGATTACC-3' and R:5'- TTAAATAGAATCATTTTTCCC-3') was used to confirm INSV presence (Hassani-Mehraban et al. 2016). Full length N cDNA amplicon sequencing [GenBank No. PP658213] revealed 99.62% nucleotide identity to NCBI GenBank accessions KF926828 (orchid in California), MH453554.1 (hosta from NY), and MH453552.1 (foxglove from NY), all of which are INSV N sequences. The infected leaf samples were used to mechanically inoculate Emilia sonchifolia and tomato (cv.'Moneymaker') using standard virological methods. We successfully infected E. sonchifolia with INSV (confirmed with visual mosaic symptoms and positive INSV ImmunoStrip). However, mechanical inoculation of the tomato plants proved unsuccessful. Using the INSV infected E. sonchifolia leaves as an inoculum source, we generated a viruliferous Frankliniella occidentalis (Western flower thrips) cohort and challenged three week old tomatoes using thrips mediated inoculation (adapted from Aramburu et al. 2009 and Rotenberg et al., 2009). Twenty days post-inoculation, tomatoes with thrips feeding scars were symptomatic for INSV infection with chlorotic and necrotic spots, stunting, and reduced vigor. INSV infection of these tomato plants was verified with a positive INSV ImmunoStrip® result, two-step RT-PCR amplification of N, and Sanger sequencing of N. Samples from thrips-inoculated tomato plants did not test positive for TSWV. Sequence alignment showed that the recovered virus sequence was 99.85% identical to the original INSV sequence from the diagnostic sample (a single nucleotide difference). To the best of our knowledge, this is the first instance of INSV infecting tomato in NC production systems. Although TSWV is more common in vegetable production in NC (253 cases of TSWV compared to 1 case of INSV in vegetable crops based on NC State Plant Disease and Insect Clinic records since 2008), INSV incursion into tomato producing areas is concerning and should be closely monitored, especially at the transplant stage. This report also underscores the importance of using thrips vectors to transmit virus in screening for susceptibility to orthotospoviruses.

3.
Phytopathology ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37856697

RESUMEN

Tomato spotted wilt virus (TSWV) and related thrips-borne orthotospoviruses are a threat to food and ornamental crops. Orthotospoviruses have the capacity for rapid genetic change by genome segment reassortment and mutation. Genetic resistance is one of the most effective strategies for managing orthotospoviruses, but there are multiple examples of resistance gene breakdown. Our goal was to develop effective multigenic, broad-spectrum resistance to TSWV and other orthotospoviruses. The most conserved sequences for each open reading frame (ORF) of the TSWV genome were identified and comparison to other orthotospoviruses revealed sequence conservation within virus clades and some overlapped with domains with well-documented biological functions. We made six hairpin constructs, each of which incorporated sequences matching portions of all five ORFs. Tomato plants expressing the hairpin transgene were challenged with TSWV by thrips and leaf-rub inoculation and four constructs provided strong protection against TSWV in foliage and fruit. To determine if the hairpin constructs provided protection against other emerging orthotospoviruses, we challenged the plants with tomato chlorotic spot virus and resistance-breaking TSWV (RB-TSWV) and found that the same constructs also provided resistance to these related viruses. Antiviral hairpin constructs are an effective way to protect plants from multiple orthotospoviruses and are an important strategy in the fight against RB-TSWV and emerging viruses. Targeting of all five viral ORFs is expected to increase the durability of resistance and combining them with other resistance genes could further extend the utility of this disease control strategy.

4.
Plant Dis ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627809

RESUMEN

Widespread use of tomato cultivars with the Sw-5 resistance gene has led to the emergence of resistance-breaking (RB) strains of tomato spotted wilt virus across the globe. In June of 2022, tomato spotted wilt (TSW) symptoms were observed at two farms (A and B, within 15 miles of each other) in Rowan County, NC on several commercial TSW resistant tomato cultivars (all heterozygous for the Sw-5 gene). At farm A, ~10% of plants had symptomatic foliage with ~30% of fruit with symptoms, while at farm B, up to 50% of plants had symptomatic foliage with ~80% of fruit with symptoms. Visual symptoms included stunting, severe leaf curling and bronzing, necrotic lesions on leaves, petioles and stems, and concentric ring spots on fruit (Supplementary Fig. 1). TSWV ImmunoStrips (AgDia, Elkhart, IN) and reverse-transcription (RT)-PCR with NSm primers (di Rienzo et al 2018) confirmed the presence of TSWV in 12 symptomatic plants sampled across the two farms. Primers designed to detect Impatiens necrotic spot virus, groundnut ringspot virus, tomato chlorotic spot virus, tomato chlorosis virus, alfalfa mosaic virus, and tomato necrotic streak virus (ilarvirus, Badillo et al., 2016) failed to generate amplicons of the expected size from cDNA generated from these field samples. The amplicons from full-length NSm cDNA were sequenced from independent, single-leaflet isolates from the TSWV-positive plants (three from farm A, nine from farm B) with the expectation of finding an amino acid (aa) substitution associated with the Sw-5 RB phenotype identified previously in CA (C118Y, Batuman et al. 2017) or Spain (C118Y and T120N, Lopez et al. 2011). All three nucleotide sequences from farm A contained the NSm C118Y substitution reported in CA. All three sequences were 99% identical (including the C118Y mutation) to NCBI GenBank accession KU179600.1, a TSWV isolate collected from GA in 2014 with no cultivar information reported. The nine nucleotide sequences from farm B contained neither of the two previously reported aa substitutions associated with the RB phenotype. Instead, all contained a D122G substitution within a conserved region of the TSWV NSm protein reported to be involved in direct interaction with the Sw-5 protein (Zhu et al 2017). Likewise, Huang et al (2021) generated a D122A mutation in TSWV-NSm, resulting in failure to elicit a Sw-5 mediated hypersensitive response. Three NSm sequences retrieved from GenBank contained the D122G substitution (AY848921.1, HM015516.1, KU179582.1), however, this mutation was not implicated directly with RB phenotypes (Ciuffo et al., 2005; Lopez et al., 2011; Marshall, 2016). The RB phenotype was confirmed with the NC variants on 'Mountain Merit' (Sw-5) by two means of virus inoculation: mechanical, rub-inoculation with extracted sap from infected plants, and thrips transmission assays with lab colony-maintained, Frankliniella occidentalis, the western flower thrips. Symptomatic leaf tissue obtained from these inoculation assays tested positive for TSWV by DAS-ELISA (AgDia, Elkhart, IN) and RT-PCR with NSm primers, providing definitive evidence of the occurrence of RB-TSWV at both farms, and subsequent sequencing confirmed the C118Y and D122G substitutions. This report warrants further investigation of the putative origins, prevalence and epidemiological implications of RB-TSWV variants in NC tomato production, and the development of new sources of resistance to TSWV.

5.
BMC Genomics ; 22(1): 810, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34758725

RESUMEN

BACKGROUND: The gut is the first barrier to infection by viruses that are internally borne and transmitted persistently by arthropod vectors to plant and animal hosts. Tomato spotted wilt virus (TSWV), a plant-pathogenic virus, is transmitted exclusively by thrips vectors in a circulative-propagative manner. Frankliniella occidentalis (western flower thrips), the principal thrips vector of TSWV, is transmission-competent only if the virus is acquired by young larvae. To begin to understand the larval gut response to TSWV infection and accumulation, a genome-assisted, transcriptomic analysis of F. occidentalis gut tissues of first (early L1) and second (early L2 and late L2) instar larvae was conducted using RNA-Seq to identify differentially-expressed transcripts (DETs) in response to TSWV compared to non-exposed cohorts. RESULTS: The larval gut responded in a developmental stage-dependent manner, with the majority of DETs (71%) associated with the early L1 stage at a time when virus infection is limited to the midgut epithelium. Provisional annotations of these DETs inferred roles in digestion and absorption, insect innate immunity, and detoxification. Weighted gene co-expression network analysis using all assembled transcripts of the gut transcriptome revealed eight gene modules that distinguish larval development. Intra-module interaction network analysis of the three most DET-enriched modules revealed ten central hub genes. Droplet digital PCR-expression analyses of select network hub and connecting genes revealed temporal changes in gut expression during and post exposure to TSWV. CONCLUSIONS: These findings expand our understanding of the developmentally-mediated interaction between thrips vectors and orthotospoviruses, and provide opportunities for probing pathways for biomarkers of thrips vector competence.


Asunto(s)
Thysanoptera , Tospovirus , Animales , Larva/genética , Enfermedades de las Plantas , Thysanoptera/genética , Tospovirus/genética , Transcriptoma
6.
BMC Biol ; 18(1): 142, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33070780

RESUMEN

BACKGROUND: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS: We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS: Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.


Asunto(s)
Genoma de los Insectos , Rasgos de la Historia de Vida , Thysanoptera/fisiología , Transcriptoma , Animales , Productos Agrícolas , Conducta Alimentaria , Cadena Alimentaria , Inmunidad Innata/genética , Percepción , Filogenia , Reproducción/genética , Thysanoptera/genética , Thysanoptera/inmunología
8.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31413126

RESUMEN

The plant-pathogenic virus tomato spotted wilt virus (TSWV) encodes a structural glycoprotein (GN) that, like with other bunyavirus/vector interactions, serves a role in viral attachment and possibly in entry into arthropod vector host cells. It is well documented that Frankliniella occidentalis is one of nine competent thrips vectors of TSWV transmission to plant hosts. However, the insect molecules that interact with viral proteins, such as GN, during infection and dissemination in thrips vector tissues are unknown. The goals of this project were to identify TSWV-interacting proteins (TIPs) that interact directly with TSWV GN and to localize the expression of these proteins in relation to virus in thrips tissues of principal importance along the route of dissemination. We report here the identification of six TIPs from first-instar larvae (L1), the most acquisition-efficient developmental stage of the thrips vector. Sequence analyses of these TIPs revealed homology to proteins associated with the infection cycle of other vector-borne viruses. Immunolocalization of the TIPs in L1 revealed robust expression in the midgut and salivary glands of F. occidentalis, the tissues most important during virus infection, replication, and plant inoculation. The TIPs and GN interactions were validated using protein-protein interaction assays. Two of the thrips proteins, endocuticle structural glycoprotein and cyclophilin, were found to be consistent interactors with GN These newly discovered thrips protein-GN interactions are important for a better understanding of the transmission mechanism of persistent propagative plant viruses by their vectors, as well as for developing new strategies of insect pest management and virus resistance in plants.IMPORTANCE Thrips-transmitted viruses cause devastating losses to numerous food crops worldwide. For negative-sense RNA viruses that infect plants, the arthropod serves as a host as well by supporting virus replication in specific tissues and organs of the vector. The goal of this work was to identify thrips proteins that bind directly to the viral attachment protein and thus may play a role in the infection cycle in the insect. Using the model plant bunyavirus tomato spotted wilt virus (TSWV), and the most efficient thrips vector, we identified and validated six TSWV-interacting proteins from Frankliniella occidentalis first-instar larvae. Two proteins, an endocuticle structural glycoprotein and cyclophilin, were able to interact directly with the TSWV attachment protein, GN, in insect cells. The TSWV GN-interacting proteins provide new targets for disrupting the viral disease cycle in the arthropod vector and could be putative determinants of vector competence.


Asunto(s)
Proteínas de Insectos/metabolismo , Insectos Vectores/metabolismo , Thysanoptera/metabolismo , Tospovirus/metabolismo , Proteínas Estructurales Virales/metabolismo , Animales , Proteínas de Insectos/genética , Insectos Vectores/clasificación , Insectos Vectores/genética , Larva/metabolismo , Filogenia , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente , Unión Proteica , Células Sf9 , Thysanoptera/clasificación , Thysanoptera/genética , Nicotiana , Tospovirus/genética , Tospovirus/fisiología , Proteínas Estructurales Virales/genética
9.
J Gen Virol ; 98(8): 2156-2170, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28741996

RESUMEN

Persistent propagative viruses maintain intricate interactions with their arthropod vectors. In this study, we investigated the transcriptome-level responses associated with a persistent propagative phytovirus infection in various life stages of its vector using an Illumina HiSeq sequencing platform. The pathosystem components included a Tospovirus, Tomato spotted wilt virus (TSWV), its insect vector, Frankliniella fusca (Hinds), and a plant host, Arachis hypogaea (L.). We assembled (de novo) reads from three developmental stage groups of virus-exposed and non-virus-exposed F. fusca into one transcriptome consisting of 72 366 contigs and identified 1161 differentially expressed (DE) contigs. The number of DE contigs was greatest in adults (female) (562) when compared with larvae (first and second instars) (395) and pupae (pre- and pupae) (204). Upregulated contigs in virus-exposed thrips had blastx annotations associated with intracellular transport and virus replication. Upregulated contigs were also assigned blastx annotations associated with immune responses, including apoptosis and phagocytosis. In virus-exposed larvae, Blast2GO analysis identified functional groups, such as multicellular development with downregulated contigs, while reproduction, embryo development and growth were identified with upregulated contigs in virus-exposed adults. This study provides insights into differences in transcriptome-level responses modulated by TSWV in various life stages of an important vector, F. fusca.


Asunto(s)
Proteínas de Insectos/genética , Insectos Vectores/crecimiento & desarrollo , Insectos Vectores/genética , Enfermedades de las Plantas/virología , Thysanoptera/crecimiento & desarrollo , Thysanoptera/genética , Tospovirus/fisiología , Animales , Proteínas de Insectos/metabolismo , Insectos Vectores/virología , Larva/genética , Larva/crecimiento & desarrollo , Larva/virología , Thysanoptera/virología , Tospovirus/genética , Transcriptoma
10.
Phytopathology ; 106(2): 202-10, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26799958

RESUMEN

Vector-borne virus diseases of wheat are recurrent in nature and pose significant threats to crop production worldwide. In the spring of 2011 and 2012, a state-wide sampling survey of multiple commercial field sites and university-managed Kansas Agricultural Experiment Station variety performance trial locations spanning all nine crop-reporting regions of the state was conducted to determine the occurrence of Barley yellow dwarf virus-PAV (BYDV-PAV), Cereal yellow dwarf virus-RPV, Wheat streak mosaic virus (WSMV), High plains virus, Soilborne wheat mosaic virus, and Wheat spindle streak mosaic virus using enzyme-linked immunosorbent assays (ELISA). As a means of directly coupling tiller infection status with tiller grain yield, multiple pairs of symptomatic and nonsymptomatic plants were selected and individual tillers were tagged for virus species and grain yield determination at the variety performance trial locations. BYDV-PAV and WSMV were the two most prevalent species across the state, often co-occurring within location. Of those BYDV-PAV- or WSMV-positive tillers, 22% and 19%, respectively, were nonsymptomatic, a finding that underscores the importance of sampling criteria to more accurately assess virus occurrence in winter wheat fields. Symptomatic tillers that tested positive for BYDV-PAV produced significantly lower grain yields compared with ELISA-negative tillers in both seasons, as did WSMV-positive tillers in 2012. Nonsymptomatic tillers that tested positive for either of the two viruses in 2011 produced significantly lower grain yields than tillers from nonsymptomatic, ELISA-negative plants, an indication that these tillers were physiologically compromised in the absence of virus-associated symptoms. Overall, the virus survey and tagged paired-tiller sampling strategy revealed effects of virus infection on grain yield of individual tillers of plants grown under field conditions and may provide a complementary approach toward future estimates of the impact of virus incidence on crop health in Kansas.


Asunto(s)
Luteoviridae/aislamiento & purificación , Enfermedades de las Plantas/virología , Potyviridae/aislamiento & purificación , Triticum/virología , Agricultura , Biomasa , Grano Comestible/crecimiento & desarrollo , Grano Comestible/virología , Ensayo de Inmunoadsorción Enzimática , Kansas , Luteoviridae/fisiología , Luteovirus , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/virología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/virología , Virus de Plantas/aislamiento & purificación , Virus de Plantas/fisiología , Potyviridae/fisiología , Triticum/crecimiento & desarrollo
11.
J Insect Sci ; 16(1)2016.
Artículo en Inglés | MEDLINE | ID: mdl-28076276

RESUMEN

The corn planthopper, Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae), transmits Maize mosaic rhabdovirus (MMV), an important pathogen of maize and sorghum, in a persistent propagative manner. To better understand the vectorial capacity of P. maidis, we determined the efficiency of MMV acquisition by nymphal and adult stages, and characterized MMV titer through development. Acquisition efficiency, i.e., proportion of insects that acquired the virus, was determined by reverse transcriptase polymerase chain reaction (RT-PCR) and virus titer of individual insects was estimated by quantitative RT-PCR. Acquisition efficiency of MMV differed significantly between nymphs and adults. MMV titer increased significantly over time and throughout insect development from nymphal to adult stage, indication of virus replication in the vector during development. There was a positive association between the vector developmental stage and virus titer. Also, the average titer in male insects was threefold higher than female titers, and this difference persisted up to 30 d post adult eclosion. Overall, our findings indicate that nymphs are more efficient than adults at acquiring MMV and virus accumulated in the vector over the course of nymphal development. Furthermore, sustained infection over the lifespan of P. maidis indicates a potentially high capacity of this vector to transmit MMV.


Asunto(s)
Hemípteros/virología , Insectos Vectores/virología , Enfermedades de las Plantas/virología , Rhabdoviridae/fisiología , Animales , Femenino , Hemípteros/crecimiento & desarrollo , Masculino , Ninfa/virología , Zea mays/virología
12.
Mol Plant Microbe Interact ; 27(3): 296-304, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24405031

RESUMEN

Vector-borne viruses are a threat to human, animal, and plant health worldwide, requiring the development of novel strategies for their control. Tomato spotted wilt virus (TSWV) is one of the 10 most economically significant plant viruses and, together with other tospoviruses, is a threat to global food security. TSWV is transmitted by thrips, including the western flower thrips, Frankliniella occidentalis. Previously, we demonstrated that the TSWV glycoprotein GN binds to thrips vector midguts. We report here the development of transgenic plants that interfere with TSWV acquisition and transmission by the insect vector. Tomato plants expressing GN-S protein supported virus accumulation and symptom expression comparable with nontransgenic plants. However, virus titers in larval insects exposed to the infected transgenic plants were three-log lower than insects exposed to infected nontransgenic control plants. The negative effect of the GN-S transgenics on insect virus titers persisted to adulthood, as shown by four-log lower virus titers in adults and an average reduction of 87% in transmission efficiencies. These results demonstrate that an initial reduction in virus infection of the insect can result in a significant decrease in virus titer and transmission over the lifespan of the vector, supportive of a dose-dependent relationship in the virus-vector interaction. These findings demonstrate that plant expression of a viral protein can be an effective way to block virus transmission by insect vectors.


Asunto(s)
Insectos Vectores/virología , Enfermedades de las Plantas/virología , Solanum lycopersicum/virología , Thysanoptera/virología , Tospovirus/fisiología , Proteínas Virales/genética , Animales , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática , Expresión Génica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas Fluorescentes Verdes , Larva , Solanum lycopersicum/citología , Solanum lycopersicum/genética , Enfermedades de las Plantas/prevención & control , Plantas Modificadas Genéticamente , Conejos , Proteínas Recombinantes de Fusión , Tospovirus/genética , Tospovirus/inmunología , Proteínas Virales/metabolismo
13.
Curr Res Insect Sci ; 6: 100086, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193173

RESUMEN

Dehydration and tomato spotted wilt virus (TSWV) infection substantially impact the feeding of western flower thrips, Frankliniella occidentalis. Until now, the dynamics between these biotic and abiotic stresses have not been examined for thrips. Here, we report water balance characteristics and changes in other biological parameters during infection with TSWV for the western flower thrips. There were no apparent differences in water balance parameters during TSWV infection of male or female thrips. Our results show that, although water balance characteristics of western flower thrips are minimally impacted by TSWV infection, the increase in feeding and activity when dehydration and TSWV are combined suggests that virus transmission could be increased under periods of drought. Importantly, survival and progeny generation were impaired during TSWV infection and dehydration bouts. The negative impact on survival and reproduction suggests that the interactions between TSWV infection and dehydration will likely reduce thrips populations. The opposite effects of dehydration on feeding/activity and survival/reproduction for virus infected thrips suggest the impact of vectorial capacity will likely be minor for TSWV transmission. As water stress significantly impacts insect-plant-virus dynamics, these studies highlight that all interactions and effects need to be measured to understand thrips-TSWV interactions in their role as viral vector to plants.

14.
Curr Opin Insect Sci ; 57: 101033, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37030512

RESUMEN

Thrips and the tospoviruses they transmit are some of the most significant threats to food and ornamental crop production globally. Control of the insect and virus is challenging and new strategies are needed. Characterizing the thrips-virus interactome provides new targets for disrupting the transmission cycle. Viral and insect determinants of vector competence are being defined, including the viral attachment protein and its structure as well as thrips proteins that interact with and respond to tospovirus infection. Additional thrips control strategies such as RNA interference need further refinement and field-applicable delivery systems, but they show promise for the knockdown of essential genes for thrips survival and virus transmission. The identification of a toxin that acts to deter thrips oviposition on cotton also presents new opportunities for control of this important pest.


Asunto(s)
Thysanoptera , Tospovirus , Femenino , Animales , Tospovirus/genética
15.
Sci Adv ; 9(15): eade2232, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37043563

RESUMEN

Wearable plant sensors hold tremendous potential for smart agriculture. We report a lower leaf surface-attached multimodal wearable sensor for continuous monitoring of plant physiology by tracking both biochemical and biophysical signals of the plant and its microenvironment. Sensors for detecting volatile organic compounds (VOCs), temperature, and humidity are integrated into a single platform. The abaxial leaf attachment position is selected on the basis of the stomata density to improve the sensor signal strength. This versatile platform enables various stress monitoring applications, ranging from tracking plant water loss to early detection of plant pathogens. A machine learning model was also developed to analyze multichannel sensor data for quantitative detection of tomato spotted wilt virus as early as 4 days after inoculation. The model also evaluates different sensor combinations for early disease detection and predicts that minimally three sensors are required including the VOC sensors.


Asunto(s)
Compuestos Orgánicos Volátiles , Dispositivos Electrónicos Vestibles , Hojas de la Planta , Temperatura , Fenómenos Fisiológicos de las Plantas , Plantas
16.
Virology ; 577: 163-173, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36395538

RESUMEN

Rhabdovirus glycoproteins (G) serve multifunctional roles in virus entry, assembly, and exit from animal cells. We hypothesize that maize mosaic virus (MMV) G is required for invasion, infection, and spread in Peregrinus maidis, the planthopper vector. Using a membrane-based yeast two-hybrid assay, we identified 107 P. maidis proteins that physically interacted with MMV G, of which approximately 53% matched proteins with known functions including endocytosis, vesicle-mediated transport, protein synthesis and turnover, nuclear export, metabolism and host defense. Physical interaction networks among conserved proteins indicated a possible cellular coordination of processes associated with MMV G translation, protein folding and trafficking. Non-annotated proteins contained predicted functional sites, including a diverse array of ligand binding sites. Cyclophilin A and apolipophorin III co-immunoprecipitated with MMV G, and each showed different patterns of localization with G in insect cells. This study describes the first protein interactome for a rhabdovirus spike protein and insect vector.

17.
Insect Biochem Mol Biol ; 149: 103843, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36113709

RESUMEN

Successful transmission of tomato spotted wilt virus (TSWV) by Frankliniella occidentalis requires robust infection of the salivary glands (SGs) and virus delivery to plants during salivation. Feeding behavior and transmission efficiency are sexually-dimorphic traits of this thrips vector species. Proteins secreted from male and female SG tissues, and the effect of TSWV infection on the thrips SG proteome are unknown. To begin to discern thrips factors that facilitate virus infection of SGs and transmission by F. occidentalis, we used gel- and label-free quantitative and qualitative proteomics to address two hypotheses: (i) TSWV infection modifies the composition and/or abundance of SG-expressed proteins in adults; and (ii) TSWV has a differential effect on the male and female SG proteome and secreted saliva. Our study revealed a sex-biased SG proteome for F. occidentalis, and TSWV infection modulated the SG proteome in a sex-dependent manner as evident by the number, differential abundance, identities and generalized roles of the proteins. Male SGs exhibited a larger proteomic response to the virus than female SGs. Intracellular processes modulated by TSWV in males indicated perturbation of SG cytoskeletal networks and cell-cell interactions, i.e., basement membrane (BM) and extracellular matrix (ECM) proteins, and subcellular processes consistent with a metabolic slow-down under infection. Several differentially-abundant proteins in infected male SGs play critical roles in viral life cycles of other host-virus pathosystems. In females, TSWV modulated processes consistent with tissue integrity and active translational and transcriptional regulation. A core set of proteins known for their roles in plant cell-wall degradation and protein metabolism were identified in saliva of both sexes, regardless of virus infection status. Saliva proteins secreted by TSWV-infected adults indicated energy generation, consumption and protein turnover, with an enrichment of cytoskeletal/BM/ECM proteins and tricarboxylic acid cycle proteins in male and female saliva, respectively. The nonstructural TSWV protein NSs - a multifunctional viral effector protein reported to target plant defenses against TSWV and thrips - was identified in female saliva. This study represents the first description of the SG proteome and secretome of a thysanopteran and provides many candidate proteins to further unravel the complex interplay between the virus, insect vector, and plant host.


Asunto(s)
Thysanoptera , Tospovirus , Animales , Femenino , Flores , Masculino , Enfermedades de las Plantas , Plantas , Proteoma/metabolismo , Proteómica , Glándulas Salivales , Thysanoptera/metabolismo , Tospovirus/fisiología
18.
J Vis Exp ; (169)2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33843934

RESUMEN

The corn planthopper, Peregrinus maidis, is a pest of maize and a vector of several maize viruses. Previously published methods describe the triggering of RNA interference (RNAi) in P. maidis through microinjection of double-stranded RNAs (dsRNAs) into nymphs and adults. Despite the power of RNAi, phenotypes generated via this technique are transient and lack long-term Mendelian inheritance. Therefore, the P. maidis toolbox needs to be expanded to include functional genomic tools that would enable the production of stable mutant strains, opening the door for researchers to bring new control methods to bear on this economically important pest. However, unlike the dsRNAs used for RNAi, the components used in CRISPR/Cas9-based genome editing and germline transformation do not easily cross cell membranes. As a result, plasmid DNAs, RNAs, and/or proteins must be microinjected into embryos before the embryo cellularizes, making the timing of injection a critical factor for success. To that end, an agarose-based egg-lay method was developed to allow embryos to be harvested from P. maidis females at relatively short intervals. Herein are provided detailed protocols for collecting and microinjecting precellular P. maidis embryos with CRISPR components (Cas9 nuclease that has been complexed with guide RNAs), and results of Cas9-based gene knockout of a P. maidis eye-color gene, white, are presented. Although these protocols describe CRISPR/Cas9-genome editing in P. maidis, they can also be used for producing transgenic P. maidis via germline transformation by simply changing the composition of the injection solution.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Zea mays/química , Animales , Endonucleasas/genética , Femenino
19.
Front Plant Sci ; 11: 575564, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424878

RESUMEN

Several plant viruses modulate vector fitness and behavior in ways that may enhance virus transmission. Previous studies have documented indirect, plant-mediated effects of tomato spotted wilt virus (TSWV) infection on the fecundity, growth and survival of its principal thrips vector, Frankliniella occidentalis, the western flower thrips. We conducted thrips performance and preference experiments combined with plant gene expression, phytohormone and total free amino acid analyses to determine if systemically-infected tomato plants modulate primary metabolic and defense-related pathways to culminate into a more favorable environment for the vector. In a greenhouse setting, we documented a significant increase in the number of offspring produced by F. occidentalis on TSWV-infected tomato plants compared to mock-inoculated plants, and in choice test assays, females exhibited enhanced settling on TSWV-infected leaves. Microarray analysis combined with phytohormone signaling pathway analysis revealed reciprocal modulation of key phytohormone pathways under dual attack, possibly indicating a coordinated and dampening defense against the vector on infected plants. TSWV infection, alone or in combination with thrips, suppressed genes associated with photosynthesis and chloroplast function thereby significantly impacting primary metabolism of the host plant, and hierarchical cluster and network analyses revealed that many of these genes were co-regulated with phytohormone defense signaling genes. TSWV infection increased expression of genes related to protein synthesis and degradation which was reflected in the increased total free amino acid content in virus-infected plants that harbored higher thrips populations. These results suggest coordinated gene networks that regulate plant primary metabolism and defense responses rendering virus-infected plants more conducive for vector colonization, an outcome that is potentially beneficial to the vector and the virus when considered within the context of the complex transmission biology of TSWV. To our knowledge this is the first study to identify global transcriptional networks that underlie the TSWV-thrips interaction as compared to a single mechanistic approach. Findings of this study increase our fundamental knowledge of host plant-virus-vector interactions and identifies underlying mechanisms of induced host susceptibility to the insect vector.

20.
Phytopathology ; 99(4): 404-10, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19271982

RESUMEN

Tomato spotted wilt virus (TSWV) is transmitted in a persistent propagative manner by Frankliniella occidentalis, the western flower thrips. While it is well established that vector competence depends on TSWV acquisition by young larvae and virus replication within the insect, the biological factors associated with frequency of transmission have not been well characterized. We hypothesized that the number of transmission events by a single adult thrips is determined, in part, by the amount of virus harbored (titer) by the insect. Transmission time-course experiments were conducted using a leaf disk assay to determine the efficiency and frequency of TSWV transmission following 2-day inoculation access periods (IAPs). Virus titer in individual adult thrips was determined by real-time quantitative reverse transcriptase-PCR (qRT-PCR) at the end of the experiments. On average, 59% of adults transmitted the virus during the first IAP (2 to 3 days post adult-eclosion). Male thrips were more efficient at transmitting TSWV multiple times compared with female thrips of the same cohort. However, females harbored two to three times more copies of TSWV-N RNA per insect, indicating that factors other than absolute virus titer in the insect contribute to a successful transmission event. Examination of virus titer in individual insects at the end of the third IAP (7 days post adult-eclosion) revealed significant and consistent positive associations between frequency of transmission and virus titer. Our data support the hypothesis that a viruliferous thrips is more likely to transmit multiple times if it harbors a high titer of virus. This quantitative relationship provides new insights into the biological parameters that may influence the spread of TSWV by thrips.


Asunto(s)
Insectos/virología , Enfermedades de las Plantas/virología , ARN Viral/análisis , Tospovirus/fisiología , Animales , Datura/virología , Femenino , Interacciones Huésped-Patógeno , Masculino , Factores Sexuales , Tospovirus/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA