Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Plant Cell ; 35(7): 2615-2634, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37052931

RESUMEN

Ascorbate (vitamin C) is an essential antioxidant in fresh fruits and vegetables. To gain insight into the regulation of ascorbate metabolism in plants, we studied mutant tomato plants (Solanum lycopersicum) that produce ascorbate-enriched fruits. The causal mutation, identified by a mapping-by-sequencing strategy, corresponded to a knock-out recessive mutation in a class of photoreceptor named PAS/LOV protein (PLP), which acts as a negative regulator of ascorbate biosynthesis. This trait was confirmed by CRISPR/Cas9 gene editing and further found in all plant organs, including fruit that accumulated 2 to 3 times more ascorbate than in the WT. The functional characterization revealed that PLP interacted with the 2 isoforms of GDP-L-galactose phosphorylase (GGP), known as the controlling step of the L-galactose pathway of ascorbate synthesis. The interaction with GGP occurred in the cytoplasm and the nucleus, but was abolished when PLP was truncated. These results were confirmed by a synthetic approach using an animal cell system, which additionally demonstrated that blue light modulated the PLP-GGP interaction. Assays performed in vitro with heterologously expressed GGP and PLP showed that PLP is a noncompetitive inhibitor of GGP that is inactivated after blue light exposure. This discovery provides a greater understanding of the light-dependent regulation of ascorbate metabolism in plants.


Asunto(s)
Antioxidantes , Galactosa , Galactosa/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico , Luz , Frutas/genética , Frutas/metabolismo , Fosforilasas/genética , Fosforilasas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
J Exp Bot ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38938160

RESUMEN

The flowering time (FT), which determines when fruits or seeds can be harvested, is subject to phenotypic plasticity, i.e. the ability of a genotype to display different phenotypes in response to environmental variations. Here, we investigated how the environment affects the genetic architecture of FT in cultivated strawberry (Fragaria ×ananassa) and modifies its QTL effects. To this end, we used a bi-parental segregating population grown for two years at widely divergent latitudes (5 European countries) and combined climatic variables with genomic data (Affymetrix® SNP array). Examination, using different phenological models, of the response of FT to photoperiod, temperature and global radiation, indicated that temperature is the main driver of FT in strawberry. We next characterized in the segregating population the phenotypic plasticity of FT by using three statistical approaches that generated plasticity parameters including reaction norm parameters. We detected 25 FT QTL summarized into 10 unique QTL. Mean values and plasticity parameters QTL were co-localized in three of them, including the major 6D_M QTL whose effect is strongly modulated by temperature. The design and validation of a genetic marker for the 6D_M QTL offers great potential for breeding programs, for example for selecting early-flowering strawberry varieties well adapted to different environmental conditions.

3.
New Phytol ; 238(5): 2033-2046, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36869436

RESUMEN

Cuticles are multifunctional hydrophobic biocomposites that protect the aerial organs of plants. During plant development, plant cuticles must accommodate different mechanical constraints combining extensibility and stiffness, and the corresponding relationships with their architecture are unknown. Recent data showed a fine-tuning of cuticle architecture during fruit development, with several chemical clusters which raise the question of how they impact the mechanical properties of cuticles. We investigated the in-depth nanomechanical properties of tomato (Solanum lycopersicum) fruit cuticle from early development to ripening, in relation to chemical and structural heterogeneities by developing a correlative multimodal imaging approach. Unprecedented sharps heterogeneities were evidenced including an in-depth mechanical gradient and a 'soft' central furrow that were maintained throughout the plant development despite the overall increase in elastic modulus. In addition, we demonstrated that these local mechanical areas are correlated to chemical and structural gradients. This study shed light on fine-tuning of mechanical properties of cuticles through the modulation of their architecture, providing new insight for our understanding of structure-function relationships of plant cuticles and for the design of bioinspired material.


Asunto(s)
Frutas , Imagen Multimodal
4.
Plant Physiol ; 190(3): 1821-1840, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36018278

RESUMEN

The cuticle is a complex polymer matrix that protects all aerial organs of plants, fulfills multiple roles in plant-environment interactions, and is critical for plant development. These functions are associated with the structural features of cuticles, and the architectural modeling of cuticles during plant development is crucial for understanding their physical properties and biological functions. In this work, the in-depth architecture of the cutin polymer matrix during fruit development was investigated. Using cherry tomato fruit (Solanum lycopersicum) as a model from the beginning of the cell expansion phase to the red ripe stage, we designed an experimental scheme combining sample pretreatment, Raman mapping, multivariate data analyses, and biochemical analyses. These approaches revealed clear chemical areas with different contributions of cutin, polysaccharides, and phenolics within the cutin polymer matrix. Besides, we demonstrated that these areas are finely tuned during fruit development, including compositional and macromolecular rearrangements. The specific spatiotemporal accumulation of phenolic compounds (p-coumaric acid and flavonoids) suggests that they fulfill distinct functions during fruit development. In addition, we highlighted an unexpected dynamic remodeling of the cutin-embedded polysaccharides pectin, cellulose, and hemicellulose. Such structural tuning enables consistent adaption of the cutin-polysaccharide continuum and the functional performance of the fruit cuticle at the different developmental stages. This study provides insights into the plant cuticle architecture and in particular into the organization of the epidermal cell wall-cuticle.


Asunto(s)
Solanum lycopersicum , Frutas , Polímeros , Polisacáridos/análisis , Fenoles , Epidermis de la Planta
5.
J Exp Bot ; 74(20): 6306-6320, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37386925

RESUMEN

Fruits of Fragaria species usually have an appealing bright red color due to the accumulation of anthocyanins, water-soluble flavonoid pigments. Octoploid cultivated strawberry (Fragaria × ananassa) is a major horticultural crop for which fruit color and associated nutritional value are main breeding targets. Great diversity in fruit color intensity and pattern is observed not only in cultivated strawberry but also in wild relatives such as its octoploid progenitor F. chiloensis or the diploid woodland strawberry F. vesca, a model for fruit species in the Rosaceae. This review examines our understanding of fruit color formation in strawberry and how ongoing developments will advance it. Natural variations of fruit color as well as color changes during fruit development or in response to several cues have been used to explore the anthocyanin biosynthetic pathway and its regulation. So far, the successful identification of causal genetic variants has been largely driven by the availability of high-throughput genotyping tools and high-quality reference genomes of F. vesca and F. × ananassa. The current completion of haplotype-resolved genomes of F. × ananassa combined with QTL mapping will accelerate the exploitation of the untapped genetic diversity of fruit color and help translate the findings into strawberry improvement.


Asunto(s)
Antocianinas , Fragaria , Antocianinas/genética , Antocianinas/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Fitomejoramiento , Flavonoides/metabolismo
6.
J Exp Bot ; 74(12): 3595-3612, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37133320

RESUMEN

Plant architecture plays a major role in flowering and therefore in crop yield. Attempts to visualize and analyse strawberry plant architecture have been few to date. Here, we developed open-source software combining two- and three-dimensional representations of plant development over time along with statistical methods to explore the variability in spatio-temporal development of plant architecture in cultivated strawberry. We applied this software to six seasonal strawberry varieties whose plants were exhaustively described monthly at the node scale. Results showed that the architectural pattern of the strawberry plant is characterized by a decrease of the module complexity between the zeroth-order module (primary crown) and higher-order modules (lateral branch crowns and extension crowns). Furthermore, for each variety, we could identify traits with a central role in determining yield, such as date of appearance and number of branches. By modeling the spatial organization of axillary meristem fate on the zeroth-order module using a hidden hybrid Markov/semi-Markov mathematical model, we further identified three zones with different probabilities of production of branch crowns, dormant buds, or stolons. This open-source software will be of value to the scientific community and breeders in studying the influence of environmental and genetic cues on strawberry architecture and yield.


Asunto(s)
Fragaria , Inflorescencia , Fragaria/genética , Desarrollo de la Planta , Meristema , Análisis Espacio-Temporal
7.
Plant Cell ; 32(10): 3188-3205, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32753430

RESUMEN

Cell fate maintenance is an integral part of plant cell differentiation and the production of functional cells, tissues, and organs. Fleshy fruit development is characterized by the accumulation of water and solutes in the enlarging cells of parenchymatous tissues. In tomato (Solanum lycopersicum), this process is associated with endoreduplication in mesocarp cells. The mechanisms that preserve this developmental program, once initiated, remain unknown. We show here that analysis of a previously identified tomato ethyl methanesulfonate-induced mutant that exhibits abnormal mesocarp cell differentiation could help elucidate determinants of fruit cell fate maintenance. We identified and validated the causal locus through mapping-by-sequencing and gene editing, respectively, and performed metabolic, cellular, and transcriptomic analyses of the mutant phenotype. The data indicate that disruption of the SlGBP1 gene, encoding GUANYLATE BINDING PROTEIN1, induces early termination of endoreduplication followed by late divisions of polyploid mesocarp cells, which consequently acquire the characteristics of young proliferative cells. This study reveals a crucial role of plant GBPs in the control of cell cycle genes, and thus, in cell fate maintenance. We propose that SlGBP1 acts as an inhibitor of cell division, a function conserved with the human hGBP-1 protein.


Asunto(s)
Frutas/citología , Frutas/crecimiento & desarrollo , Proteínas de Plantas/genética , Solanum lycopersicum/citología , Sistemas CRISPR-Cas , Ciclo Celular/genética , Diferenciación Celular , Tamaño de la Célula , Pared Celular/genética , Pared Celular/metabolismo , Endorreduplicación , Frutas/genética , Frutas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Edición Génica , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Mutación , Pectinas/genética , Pectinas/metabolismo , Fenotipo , Células Vegetales , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Ploidias
8.
Plant J ; 105(4): 907-923, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33179365

RESUMEN

Tocochromanols constitute the different forms of vitamin E (VTE), essential components of the human diet, and display a high membrane protectant activity. By combining interval mapping and genome-wide association studies (GWAS), we unveiled the genetic determinants of tocochromanol accumulation in tomato (Solanum lycopersicum) fruits. To enhance the nutritional value of this highly consumed vegetable, we dissected the natural intraspecific variability of tocochromanols in tomato fruits and genetically engineered their biosynthetic pathway. These analyses allowed the identification of a total of 25 quantitative trait loci interspersed across the genome pinpointing the chorismate-tyrosine pathway as a regulatory hub controlling the supply of the aromatic head group for tocochromanol biosynthesis. To validate the link between the chorismate-tyrosine pathway and VTE, we engineered tomato plants to bypass the pathway at the arogenate branch point. Transgenic tomatoes showed moderate increments in tocopherols (up to approximately 20%) and a massive accumulation of tocotrienols (up to approximately 3400%). Gene expression analyses of these plants reveal a trade-off between VTE and natural variation in chorismate metabolism explained by transcriptional reprogramming of specific structural genes of the pathway. By restoring the accumulation of alpha-tocotrienols (α-t3) in fruits, the plants produced here are of high pharmacological and nutritional interest.


Asunto(s)
Ácido Corísmico/metabolismo , Solanum lycopersicum/metabolismo , Vitamina E/análisis , Mapeo Cromosómico , Frutas/química , Frutas/metabolismo , Genes de Plantas/genética , Ingeniería Genética , Sitios Genéticos , Variación Genética , Estudio de Asociación del Genoma Completo , Solanum lycopersicum/química , Solanum lycopersicum/genética , Redes y Vías Metabólicas/genética , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Tirosina/metabolismo , Vitamina E/metabolismo
9.
Plant Cell Physiol ; 63(1): 120-134, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34665867

RESUMEN

The bZIP transcription factor (TF) SlTGA2.2 was previously highlighted as a possible hub in a network regulating fruit growth and transition to ripening (maturation phase). It belongs to a clade of TFs well known for their involvement in the regulation of the salicylic acid-dependent systemic acquired resistance. To investigate if this TGA TF plays a role in tomato fruit growth and maturation, we took advantage of the fruit-specific SlPPC2 promoter (PPC2pro) to target the expression of a SlTGA2.2-SRDX chimeric repressor in a developmental window restricted to early fruit growth and maturation. Here, we show that this SlTGA2.2-SRDX repressor alters early fruit development and metabolism, including chloroplast number and structure, considerably extends the time necessary to reach the mature green stage and slows down fruit ripening. RNA sequencing and plant hormone analyses reveal that PPC2pro:SlTGA2.2-SRDX fruits are maintained in an immature stage as long as PPC2pro is active, through early modifications of plant hormonal signaling and down-regulation of MADS-RIN and NAC-NOR ripening regulators. Once PPC2pro becomes inactive and therefore SlTGA2.2-SRDX expression is reduced, ripening can proceed, albeit at a slower pace than normal. Altogether, this work emphasizes the developmental continuum between fruit growth, maturation and ripening and provides a useful tool to alter and study the molecular bases of tomato fruit transition to ripening.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Frutas/crecimiento & desarrollo , Frutas/genética , Filogenia , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Mutación
10.
New Phytol ; 232(1): 372-387, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34131919

RESUMEN

Plant architecture is central in determining crop yield. In the short-day species strawberry, a crop vegetatively propagated by daughter-plants produced by stolons, fruit yield is further dependent on the trade-off between sexual reproduction (fruits) and asexual reproduction (daughter-plants). Both are largely dependent on meristem identity, which establishes the development of branches, stolons and inflorescences. Floral initiation and plant architecture are modulated by the balance between two related proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). We explored in woodland strawberry the role of the uncharacterised FveFT2 and FveFT3 genes and of the floral repressor FveTFL1 through gene expression analyses, grafting and genetic transformation (overexpression and gene editing). We demonstrate the unusual properties of these genes. FveFT2 is a nonphotoperiodic florigen permitting short-day (SD) flowering and FveTFL1 is the long-hypothesised long-day systemic antiflorigen that contributes, together with FveFT2, to the photoperiodic regulation of flowering. We additionally show that FveFT3 is not a florigen but promotes plant branching when overexpressed, that is likely to be through changing axillary meristem fate, therefore resulting in a 3.5-fold increase in fruit yield at the expense of stolons. We show that our findings can be translated into improvement of cultivated strawberry in which FveFT2 overexpression significantly accelerates flowering.


Asunto(s)
Florigena , Fragaria , Florigena/metabolismo , Flores/genética , Flores/metabolismo , Fragaria/genética , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reproducción , Estaciones del Año
11.
Plant Physiol ; 184(2): 592-606, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32788301

RESUMEN

The biopolyester cutin is ubiquitous in land plants, building the polymeric matrix of the plant's outermost defensive barrier, the cuticle. Cutin influences many biological processes in planta; however, due to its complexity and highly branched nature, the native structure remains partially unresolved. Our aim was to define an original workflow for the purification and systematic characterization of the molecular structure of cutin. To purify cutin we tested the ionic liquids cholinium hexanoate and 1-butyl-3-methyl-imidazolium acetate. The ensuing polymeric materials are highly esterified, amorphous, and have a typical monomeric composition as demonstrated by solid-state NMR, complemented by spectroscopic, thermal, and x-ray scattering analyses. We performed a systematic study by solution-state NMR of cryogenically milled cutins extracted from tomatoes (Solanum lycopersicum 'Micro-Tom'; the wild type and the GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE [GPAT6] and CUTIN SYNTHASE [CUS1] mutants). We resolved their molecular structures, relative distribution of ester aliphatics, free acid end-groups and free hydroxyl groups, differentiating between those derived from primary and secondary esters. Our data demonstrate the existence of free hydroxyl groups in cutin and provide insight into how the mutations affect the esterification arrangement of cutin. The usage of ionic liquids for studying plant polyesters has advantages over conventional approaches, since simple modifications can be applied to recover a biopolymer carrying distinct types/degrees of modifications (e.g. preservation of esters or cuticular polysaccharides), which in combination with the solution NMR methodologies developed here, constitutes essential tools to fingerprint the multifunctionality and the structure of cutin in planta.


Asunto(s)
Lípidos de la Membrana/aislamiento & purificación , Imidazoles , Líquidos Iónicos , Solanum lycopersicum , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo
12.
J Exp Bot ; 72(4): 1181-1197, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33097930

RESUMEN

Brassinosteroids (BRs) are steroid hormones that play key roles in plant development and defense. Our goal is to harness the extensive knowledge of the Arabidopsis BR signaling network to improve productivity in crop species. This first requires identifying components of the conserved network and their function in the target species. Here, we investigated the function of SlBIM1a, the closest tomato homolog of AtBIM1, which is highly expressed in fruit. SlBIM1a-overexpressing lines displayed severe plant and fruit dwarfism, and histological characterization of different transgenic lines revealed that SlBIM1a expression negatively correlated with fruit pericarp cell size, resulting in fruit size modifications. These growth phenotypes were in contrast to those found in Arabidopsis, and this was confirmed by the reciprocal ectopic expression of SlBIM1a/b in Arabidopsis and of AtBIM1 in tomato. These results determined that BIM1 function depends more on the recipient species than on its primary sequence. Yeast two-hybrid interaction studies and transcriptomic analyses of SlBIM1a-overexpressing fruit further suggested that SlBIM1a acts through its interaction with SlBZH1 to govern the transcriptional regulation of growth-related BR target genes. Together, these results suggest that SlBIM1a is a negative regulator of pericarp cell expansion, possibly at the crossroads with auxin and light signaling.


Asunto(s)
Brasinoesteroides , Solanum lycopersicum , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo
13.
J Exp Bot ; 72(8): 3091-3107, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33530105

RESUMEN

Ascorbate is a major antioxidant buffer in plants. Several approaches have been used to increase the ascorbate content of fruits and vegetables. Here, we combined forward genetics with mapping-by-sequencing approaches using an ethyl methanesulfonate (EMS)-mutagenized Micro-Tom population to identify putative regulators underlying a high-ascorbate phenotype in tomato fruits. Among the ascorbate-enriched mutants, the family with the highest fruit ascorbate level (P17C5, up to 5-fold wild-type level) had strongly impaired flower development and produced seedless fruit. Genetic characterization was performed by outcrossing P17C5 with cv. M82. We identified the mutation responsible for the ascorbate-enriched trait in a cis-acting upstream open reading frame (uORF) involved in the downstream regulation of GDP-l-galactose phosphorylase (GGP). Using a specific CRISPR strategy, we generated uORF-GGP1 mutants and confirmed the ascorbate-enriched phenotype. We further investigated the impact of the ascorbate-enriched trait in tomato plants by phenotyping the original P17C5 EMS mutant, the population of outcrossed P17C5 × M82 plants, and the CRISPR-mutated line. These studies revealed that high ascorbate content is linked to impaired floral organ architecture, particularly anther and pollen development, leading to male sterility. RNA-seq analysis suggested that uORF-GGP1 acts as a regulator of ascorbate synthesis that maintains redox homeostasis to allow appropriate plant development.


Asunto(s)
Solanum lycopersicum , Ácido Ascórbico , Fertilidad , Frutas/genética , Solanum lycopersicum/genética , Polen/genética
14.
Plant J ; 97(1): 73-90, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30417464

RESUMEN

Tomato (Solanum lycopersicum), which is used for both processing and fresh markets, is a major crop species that is the top ranked vegetable produced over the world. Tomato is also a model species for research in genetics, fruit development and disease resistance. Genetic resources available in public repositories comprise the 12 wild related species and thousands of landraces, modern cultivars and mutants. In addition, high quality genome sequences are available for cultivated tomato and for several wild relatives, hundreds of accessions have been sequenced, and databases gathering sequence data together with genetic and phenotypic data are accessible to the tomato community. Major breeding goals are productivity, resistance to biotic and abiotic stresses, and fruit sensorial and nutritional quality. New traits, including resistance to various biotic and abiotic stresses and root architecture, are increasingly being studied. Several major mutations and quantitative trait loci (QTLs) underlying traits of interest in tomato have been uncovered to date and, thanks to new populations and advances in sequencing technologies, the pace of trait discovery has considerably accelerated. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing (GE) already proved its remarkable efficiency in tomato for engineering favorable alleles and for creating new genetic diversity by gene disruption, gene replacement, and precise base editing. Here, we provide insight into the major tomato traits and underlying causal genetic variations discovered so far and review the existing genetic resources and most recent strategies for trait discovery in tomato. Furthermore, we explore the opportunities offered by CRISPR/Cas9 and their exploitation for trait editing in tomato.


Asunto(s)
Resistencia a la Enfermedad/genética , Edición Génica , Genoma de Planta/genética , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo/genética , Solanum lycopersicum/genética , Alelos , Frutas/genética , Frutas/inmunología , Solanum lycopersicum/inmunología , Fenotipo , Fitomejoramiento
15.
Planta ; 252(3): 36, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32767124

RESUMEN

MAIN CONCLUSION: The oxidant/antioxidant balance affects the ripening time of tomato fruit. Ripening of tomato fruit is associated with several modifications such as loss of cell wall firmness and transformation of chloroplasts to chromoplasts. Besides a peak in H2O2, reactive oxygen species (ROS) are observed at the transition stage. However, the role of different components of oxidative stress metabolism in fruit ripening has been scarcely addressed. Two GDP-L-galactose phosphorylase (GGP) Solanum lycopersicum L. cv Micro-Tom mutants which have fruit with low ascorbic acid content (30% of wild type) were used in this work to unravel the participation of ascorbic acid and H2O2 in fruit maturation. Both GGP mutants show delayed fruit maturation with no peak of H2O2; treatment with ascorbic acid increases its own concentration and accelerates ripening only in mutants to become like wild type plants. Unexpectedly, the treatment with ascorbic acid increases H2O2 synthesis in both mutants resembling what is observed in wild type fruit. Exogenous supplementation with H2O2 decreases its own synthesis delaying fruit maturation in plants with low ascorbic acid content. The site of ROS production is localized in the chloroplasts of fruit of all genotypes as determined by confocal microscopy analysis. The results presented here demonstrate that both ascorbic acid and H2O2 actively participate in tomato fruit ripening.


Asunto(s)
Ácido Ascórbico/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Ácido Ascórbico/genética , Frutas/genética , Variación Genética , Solanum lycopersicum/genética , Proteínas de Plantas/genética
16.
Planta ; 251(2): 54, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31970534

RESUMEN

MAIN CONCLUSION: Reduced GDP-L-galactose phosphorylase expression and deficiency of ascorbic acid content lead to decreased fruit set and yield in tomato plants. Reduced GDP-L-galactose phosphorylase expression and deficiency of ascorbic acid content lead to decreased fruit set and yield in tomato plants. GDP-L-galactose phosphorylase (GGP) catalyzes the first step committed to ascorbic acid synthesis. The participation of GDP-L-galactose phosphorylase and ascorbate in tomato fruit production and quality was studied in this work using two SlGGP1 deficient EMS Micro-Tom mutants. The SlGGP1 mutants display decreased concentrations of ascorbate in roots, leaves, flowers, and fruit. The initiation of anthesis is delayed in ggp1 plants but the number of flowers is similar to wild type. The number of fruits is reduced in ggp1 mutants with an increased individual weight. However, the whole fruit biomass accumulation is reduced in both mutant lines. Fruits of the ggp1 plants produce more ethylene and show higher firmness and soluble solids content than the wild type after the breaker stage. Leaf CO2 uptake decreases about 50% in both ggp1 mutants at saturating light conditions; however, O2 production in an enriched CO2 atmosphere is only 19% higher in wild type leaves. Leaf conductance that is largely reduced in both mutants may be the main limitation for photosynthesis. Sink-source assays and hormone concentration were measured to determine restrictions to fruit yield. Manipulation of leaf area/fruit number relationship demonstrates that the number of fruits and not the provision of photoassimilates from the source restricts biomass accumulation in the ggp1 lines. The lower gibberellins concentration measured in the flowers would contribute to the lower fruit set, thus impacting in tomato yield. Taken as a whole these results demonstrate that ascorbate biosynthetic pathway critically participates in tomato development and fruit production.


Asunto(s)
Ácido Ascórbico/biosíntesis , Frutas/enzimología , Frutas/crecimiento & desarrollo , Galactosa/metabolismo , Guanosina Difosfato/metabolismo , Monoéster Fosfórico Hidrolasas/deficiencia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimología , Biomasa , Gases/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Mutación/genética , Fotosíntesis , Hojas de la Planta/metabolismo , Análisis de Componente Principal
17.
New Phytol ; 226(3): 809-822, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31883116

RESUMEN

The cuticle is an essential and ubiquitous biological polymer composite covering aerial plant organs, whose structural component is the cutin polyester entangled with cell wall polysaccharides. The nature of the cutin-embedded polysaccharides (CEPs) and their association with cutin polyester are still unresolved Using tomato fruit as a model, chemical and enzymatic pretreatments combined with biochemical and biophysical methods were developed to compare the fine structure of CEPs with that of the noncutinized polysaccharides (NCPs). In addition, we used tomato fruits from cutin-deficient transgenic lines cus1 (cutin synthase 1) to study the impact of cutin polymerization on the fine structure of CEPs. Cutin-embedded polysaccharides exhibit specific structural features including a high degree of esterification (i.e. methylation and acetylation), a low ramification of rhamnogalacturonan (RGI), and a high crystallinity of cellulose. In addition to decreasing cutin deposition and polymerization, cus1 silencing induced a specific modification of CEPs, especially on pectin content, while NCPs were not affected. This new evidence of the structural specificities of CEPs and of the cross-talk between cutin polymerization and polysaccharides provides new hypotheses concerning the formation of these complex lipopolysaccharide edifices.


Asunto(s)
Solanum lycopersicum , Pared Celular , Frutas , Lípidos de la Membrana , Poliésteres , Polisacáridos
18.
Plant Cell ; 29(9): 2168-2182, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28874507

RESUMEN

Asexual and sexual reproduction occur jointly in many angiosperms. Stolons (elongated stems) are used for asexual reproduction in the crop species potato (Solanum tuberosum) and strawberry (Fragaria spp), where they produce tubers and clonal plants, respectively. In strawberry, stolon production is essential for vegetative propagation at the expense of fruit yield, but the underlying molecular mechanisms are unknown. Here, we show that the stolon deficiency trait of the runnerless (r) natural mutant in woodland diploid strawberry (Fragaria vesca) is due to a deletion in the active site of a gibberellin20-oxidase (GA20ox) gene, which is expressed primarily in the axillary meristem dome and primordia and in developing stolons. This mutation, which is found in all r mutants, goes back more than three centuries. When FveGA20ox4 is mutated, axillary meristems remain dormant or produce secondary shoots terminated by inflorescences, thus increasing the number of inflorescences in the plant. The application of bioactive gibberellin (GA) restored the runnering phenotype in the r mutant, indicating that GA biosynthesis in the axillary meristem is essential for inducing stolon differentiation. The possibility of regulating the runnering-flowering decision in strawberry via FveGA20ox4 provides a path for improving productivity in strawberry by controlling the trade-off between sexual reproduction and vegetative propagation.


Asunto(s)
Diploidia , Flores/fisiología , Fragaria/enzimología , Fragaria/genética , Oxigenasas de Función Mixta/metabolismo , Arabidopsis/genética , Biocatálisis , Segregación Cromosómica/genética , Cruzamientos Genéticos , Eliminación de Gen , Regulación de la Expresión Génica de las Plantas , Sitios Genéticos , Giberelinas/metabolismo , Homocigoto , Meristema/fisiología , Fenotipo , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Plant Cell Physiol ; 59(11): 2188-2203, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239816

RESUMEN

Tocopherols are non-polar compounds synthesized in the plastids, which function as major antioxidants of the plant cells and are essential in the human diet. Both the intermediates and final products of the tocopherol biosynthetic pathway must cross plastid membranes to reach their sites of action. So far, no protein with tocopherol binding activity has been reported in plants. Here, we demonstrated that the tomato SlTBP protein is targeted to chloroplasts and able to bind α-tocopherol. SlTBP-knockdown tomato plants exhibited reduced levels of tocopherol in both leaves and fruits. Several tocopherol deficiency phenotypes were apparent in the transgenic lines, such as alterations in photosynthetic parameters, dramatic distortion of thylakoid membranes and significant variations in the lipid profile. These results, along with the altered expression of genes related to photosynthesis, and tetrapyrrole, lipid, isoprenoid, inositol/phosphoinositide and redox metabolism, suggest that SlTBP may act in conducting tocopherol (or its biosynthetic intermediates) between the plastid compartments and/or at the interface between chloroplast and endoplasmic reticulum membranes, affecting interorganellar lipid metabolism.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , alfa-Tocoferol/metabolismo , Cloroplastos/metabolismo , Retículo Endoplásmico/metabolismo , Técnicas de Silenciamiento del Gen , Metabolismo de los Lípidos , Solanum lycopersicum/genética , Filogenia , Proteínas de Plantas/genética , Plastidios/metabolismo
20.
J Exp Bot ; 69(15): 3573-3586, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29912373

RESUMEN

Light signaling has long been reported to influence fruit biology, although the regulatory impact of fruit-localized photoreceptors on fruit development and metabolism remains unclear. Studies performed in phytochrome (PHY)-deficient tomato (Solanum lycopersicum) mutants suggest that SlPHYA, SlPHYB2, and to a lesser extent SlPHYB1 influence fruit development and ripening. By employing fruit-specific RNAi-mediated silencing of SlPHY genes, we demonstrated that fruit-localized SlPHYA and SlPHYB2 play contrasting roles in regulating plastid biogenesis and maturation in tomato. Our data revealed that fruit-localized SlPHYA, rather than SlPHYB1 or SlPHYB2, positively influences tomato plastid differentiation and division machinery via changes in both light and cytokinin signaling-related gene expression. Fruit-localized SlPHYA and SlPHYB2 were also shown to modulate sugar metabolism in early developing fruits via overlapping, yet distinct, mechanisms involving the co-ordinated transcriptional regulation of genes related to sink strength and starch biosynthesis. Fruit-specific SlPHY silencing also drastically altered the transcriptional profile of genes encoding light-repressor proteins and carotenoid-biosynthesis regulators, leading to reduced carotenoid biosynthesis during fruit ripening. Together, our data reveal the existence of an intricate PHY-hormonal interplay during fruit development and ripening, and provide conclusive evidence on the regulation of tomato quality by fruit-localized phytochromes.


Asunto(s)
Carotenoides/metabolismo , Fototransducción/efectos de la radiación , Fitocromo/metabolismo , Solanum lycopersicum/fisiología , Almidón/metabolismo , Citocininas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/fisiología , Frutas/efectos de la radiación , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/efectos de la radiación , Reguladores del Crecimiento de las Plantas/metabolismo , Plastidios/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA