Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 29(55): e202301642, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37427863

RESUMEN

Malaria is the one of the deadliest infectious diseases worldwide. Chemically, quinolines are excellent ligands for metal coordination and are deployed as drugs for malaria treatment. There is a growing body of evidence indicating that metal complexes can be conjugated with antimalarial quinolines to be used as chemical tools to overcome the disadvantages of quinolines, improving their bioactive speciation, cellular distribution, and subsequently broadening the spectrum of activity to multiple stages of the complex Plasmodium life cycle. In this study, four novel complexes of ruthenium(II)- and gold(I)-containing amodiaquine (AQ) were synthesized, and a careful chemical characterization revealed the precise coordination site of AQ to the metals. Their speciation in solution was investigated, demonstrating the stability of the quinoline-metal bond. RuII - and AuI -AQ complexes were demonstrated to be potent and efficacious in inhibiting parasite growth in multiple stages of the Plasmodium life cycle as assayed in vitro and in vivo. These properties could be attributed to the ability of the metal-AQ complexes to reproduce the suppression of heme detoxification induced by AQ, while also inhibiting other processes in the parasite life cycle; this can be attributed to the action of the metallic species. Altogether, these findings indicate that metal coordination with antimalarial quinolines is a potential chemical tool for drug design and discovery in malaria and other infectious diseases susceptible to quinoline treatment.


Asunto(s)
Antimaláricos , Complejos de Coordinación , Malaria , Plasmodium , Quinolinas , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Amodiaquina/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Malaria/tratamiento farmacológico , Quinolinas/farmacología , Quinolinas/uso terapéutico , Plasmodium falciparum
2.
Chimia (Aarau) ; 77(9): 593-602, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38047835

RESUMEN

Thanks to its expertise in clinical research, epidemiology, infectious diseases, microbiology, parasitology, public health, translational research and tropical medicine, coupled with deeply rooted partnerships with institutions in low- and middle-income countries (LMICs), the Swiss Tropical and Public Health Institute (Swiss TPH) has been a key contributor in many drug research and development consortia involving academia, pharma and product development partnerships. Our know-how of the maintenance of parasites and their life-cycles in the laboratory, plus our strong ties to research centres and disease control programme managers in LMICs with access to field sites and laboratories, have enabled systems for drug efficacy testing in vitro and in vivo, clinical research, and modelling to support the experimental approaches. Thus, Swiss TPH has made fundamental contributions towards the development of new drugs - and the better use of old drugs - for neglected tropical diseases and infectious diseases of poverty, such as Buruli ulcer, Chagas disease, food-borne trematodiasis (e.g. clonorchiasis, fascioliasis and opisthorchiasis), human African trypanosomiasis, leishmaniasis, malaria, schistosomiasis, soil-transmitted helminthiasis and tuberculosis. In this article, we show case the success stories of molecules to which Swiss TPH has made a substantial contribution regarding their use as anti-infective compounds with the ultimate aim to improve people's health and well-being.


Asunto(s)
Úlcera de Buruli , Enfermedades Transmisibles , Medicina Tropical , Humanos , Salud Pública , Suiza , Enfermedades Transmisibles/tratamiento farmacológico
3.
Antimicrob Agents Chemother ; 66(11): e0055622, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36197116

RESUMEN

The development and spread of drug-resistant phenotypes substantially threaten malaria control efforts. Combination therapies have the potential to minimize the risk of resistance development but require intensive preclinical studies to determine optimal combination and dosing regimens. To support the selection of new combinations, we developed a novel in vitro-in silico combination approach to help identify the pharmacodynamic interactions of the two antimalarial drugs in a combination which can be plugged into a pharmacokinetic/pharmacodynamic model built with human monotherapy parasitological data to predict the parasitological endpoints of the combination. This makes it possible to optimally select drug combinations and doses for the clinical development of antimalarials. With this assay, we successfully predicted the endpoints of two phase 2 clinical trials in patients with the artefenomel-piperaquine and artefenomel-ferroquine drug combinations. In addition, the predictive performance of our novel in vitro model was equivalent to that of the humanized mouse model outcome. Last, our more informative in vitro combination assay provided additional insights into the pharmacodynamic drug interactions compared to the in vivo systems, e.g., a concentration-dependent change in the maximum killing effect (Emax) and the concentration producing 50% of the killing maximum effect (EC50) of piperaquine or artefenomel or a directional reduction of the EC50 of ferroquine by artefenomel and a directional reduction of Emax of ferroquine by artefenomel. Overall, this novel in vitro-in silico-based technology will significantly improve and streamline the economic development of new drug combinations for malaria and potentially also in other therapeutic areas.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Parásitos , Humanos , Animales , Ratones , Antimaláricos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria/tratamiento farmacológico , Combinación de Medicamentos , Plasmodium falciparum
4.
Antimicrob Agents Chemother ; 66(7): e0011422, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35727057

RESUMEN

The rate at which parasitemia declines in a host after treatment with an antimalarial drug is a major metric for assessment of antimalarial drug activity in preclinical models and in early clinical trials. However, this metric does not distinguish between viable and nonviable parasites. Thus, enumeration of parasites may result in underestimation of drug activity for some compounds, potentially confounding its use as a metric for assessing antimalarial activity in vivo. Here, we report a study of the effect of artesunate on Plasmodium falciparum viability in humans and in mice. We first measured the drug effect in mice by estimating the decrease in parasite viability after treatment using two independent approaches to estimate viability. We demonstrate that, as previously reported in humans, parasite viability declines much faster after artesunate treatment than does the decline in parasitemia (termed parasite clearance). We also observed that artesunate kills parasites faster at higher concentrations, which is not discernible from the traditional parasite clearance curve and that each subsequent dose of artesunate maintains its killing effect. Furthermore, based on measures of parasite viability, we could accurately predict the in vivo recrudescence of infection. Finally, using pharmacometrics modeling, we show that the apparent differences in the antimalarial activity of artesunate in mice and humans are partly explained by differences in host removal of dead parasites in the two hosts. However, these differences, along with different pharmacokinetic profiles, do not fully account for the differences in activity. (This study has been registered with the Australian New Zealand Clinical Trials Registry under identifier ACTRN12617001394336.).


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Parásitos , Animales , Antimaláricos/farmacocinética , Antimaláricos/uso terapéutico , Artemisininas/farmacocinética , Artemisininas/uso terapéutico , Artesunato/farmacología , Artesunato/uso terapéutico , Australia , Humanos , Malaria Falciparum/tratamiento farmacológico , Ratones , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Plasmodium falciparum
5.
Malar J ; 21(1): 151, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35570264

RESUMEN

BACKGROUND: Targeting the asymptomatic liver stage of Plasmodium infection through chemoprevention could become a key intervention to reduce malaria-associated incidence and mortality. METHODS: M5717, a Plasmodium elongation factor 2 inhibitor, was assessed in vitro and in vivo with readily accessible Plasmodium berghei parasites. In an animal refinement, reduction, replacement approach, the in vitro IC99 value was used to feed a Population Pharmacokinetics modelling and simulation approach to determine meaningful effective doses for a subsequent Plasmodium sporozoite-induced volunteer infection study. RESULTS: Doses of 100 and 200 mg would provide exposures exceeding IC99 in 96 and 100% of the simulated population, respectively. CONCLUSIONS: This approach has the potential to accelerate the search for new anti-malarials, to reduce the number of healthy volunteers needed in a clinical study and decrease and refine the animal use in the preclinical phase.


Asunto(s)
Antimaláricos , Malaria , Animales , Antimaláricos/farmacocinética , Antimaláricos/uso terapéutico , Humanos , Hígado/parasitología , Malaria/tratamiento farmacológico , Malaria/parasitología , Malaria/prevención & control , Factor 2 de Elongación Peptídica , Plasmodium berghei
6.
Proc Natl Acad Sci U S A ; 116(14): 7015-7020, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30894487

RESUMEN

Malaria and cryptosporidiosis, caused by apicomplexan parasites, remain major drivers of global child mortality. New drugs for the treatment of malaria and cryptosporidiosis, in particular, are of high priority; however, there are few chemically validated targets. The natural product cladosporin is active against blood- and liver-stage Plasmodium falciparum and Cryptosporidium parvum in cell-culture studies. Target deconvolution in P. falciparum has shown that cladosporin inhibits lysyl-tRNA synthetase (PfKRS1). Here, we report the identification of a series of selective inhibitors of apicomplexan KRSs. Following a biochemical screen, a small-molecule hit was identified and then optimized by using a structure-based approach, supported by structures of both PfKRS1 and C. parvum KRS (CpKRS). In vivo proof of concept was established in an SCID mouse model of malaria, after oral administration (ED90 = 1.5 mg/kg, once a day for 4 d). Furthermore, we successfully identified an opportunity for pathogen hopping based on the structural homology between PfKRS1 and CpKRS. This series of compounds inhibit CpKRS and C. parvum and Cryptosporidium hominis in culture, and our lead compound shows oral efficacy in two cryptosporidiosis mouse models. X-ray crystallography and molecular dynamics simulations have provided a model to rationalize the selectivity of our compounds for PfKRS1 and CpKRS vs. (human) HsKRS. Our work validates apicomplexan KRSs as promising targets for the development of drugs for malaria and cryptosporidiosis.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum/enzimología , Inhibidores Enzimáticos/farmacología , Lisina-ARNt Ligasa/antagonistas & inhibidores , Malaria Falciparum , Plasmodium falciparum/enzimología , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Criptosporidiosis/tratamiento farmacológico , Criptosporidiosis/enzimología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/química , Humanos , Lisina-ARNt Ligasa/metabolismo , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/enzimología , Ratones SCID , Proteínas Protozoarias/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-32041711

RESUMEN

Antimalarial drug resistance in the Plasmodium falciparum parasite poses a constant challenge for drug development. To mitigate this risk, new antimalarial medicines should be developed as fixed-dose combinations. Assessing the pharmacodynamic interactions of potential antimalarial drug combination partners during early phases of development is essential in developing the targeted parasitological and clinical profile of the final drug product. Here, we have studied the combination of M5717, a P. falciparum translation elongation factor 2 inhibitor, and pyronaridine, an inhibitor of hemozoin formation. Our test cascade consisted of in vitro isobolograms as well as in vivo studies in the P. falciparum severe combined immunodeficient (SCID) mouse model. We also analyzed pharmacokinetic and pharmacodynamic parameters, including genomic sequencing of recrudescent parasites. We observed no pharmacokinetic interactions with the combination of M5717 and pyronaridine. M5717 did not negatively impact the rate of kill of the faster-acting pyronaridine, and the latter was able to suppress the selection of M5717-resistant mutants, as well as significantly delay the recrudescence of parasites both with suboptimal and optimal dosing regimens.


Asunto(s)
Antimaláricos/farmacología , Malaria Falciparum/tratamiento farmacológico , Naftiridinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Quinolinas/farmacología , Animales , Antimaláricos/farmacocinética , Resistencia a Medicamentos/fisiología , Quimioterapia Combinada , Hemoproteínas/antagonistas & inhibidores , Malaria Falciparum/prevención & control , Ratones , Ratones SCID , Naftiridinas/farmacocinética , Factor 2 de Elongación Peptídica/antagonistas & inhibidores , Quinolinas/química , Quinolinas/farmacocinética
8.
Cereb Cortex ; 29(5): 2291-2304, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30877792

RESUMEN

Hyperpolarization-activated cation channels are involved, among other functions, in learning and memory, control of synaptic transmission and epileptogenesis. The importance of the HCN1 and HCN2 isoforms for brain function has been demonstrated, while the role of HCN4, the third major neuronal HCN subunit, is not known. Here we show that HCN4 is essential for oscillatory activity in the thalamocortical (TC) network. HCN4 is selectively expressed in various thalamic nuclei, excluding the thalamic reticular nucleus. HCN4-deficient TC neurons revealed a massive reduction of Ih and strongly reduced intrinsic burst firing, whereas the current was normal in cortical pyramidal neurons. In addition, evoked bursting in a thalamic slice preparation was strongly reduced in the mutant mice probes. HCN4-deficiency also significantly slowed down thalamic and cortical oscillations during active wakefulness. Taken together, these results establish that thalamic HCN4 channels are essential for the production of rhythmic intrathalamic oscillations and determine regular TC oscillatory activity during alert states.


Asunto(s)
Ondas Encefálicas , Corteza Cerebral/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Neuronas/fisiología , Tálamo/fisiología , Potenciales de Acción , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Neurológicos , Vías Nerviosas/fisiología
9.
Nature ; 504(7479): 248-253, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24284631

RESUMEN

Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/antagonistas & inhibidores , Malaria/tratamiento farmacológico , Malaria/parasitología , Plasmodium/efectos de los fármacos , Plasmodium/enzimología , 1-Fosfatidilinositol 4-Quinasa/química , 1-Fosfatidilinositol 4-Quinasa/genética , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Citocinesis/efectos de los fármacos , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Ácidos Grasos/metabolismo , Femenino , Hepatocitos/parasitología , Humanos , Imidazoles/metabolismo , Imidazoles/farmacología , Estadios del Ciclo de Vida/efectos de los fármacos , Macaca mulatta , Masculino , Modelos Biológicos , Modelos Moleculares , Fosfatos de Fosfatidilinositol/metabolismo , Plasmodium/clasificación , Plasmodium/crecimiento & desarrollo , Pirazoles/metabolismo , Pirazoles/farmacología , Quinoxalinas/metabolismo , Quinoxalinas/farmacología , Reproducibilidad de los Resultados , Esquizontes/citología , Esquizontes/efectos de los fármacos , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
10.
Chemistry ; 23(57): 14345-14357, 2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-28967982

RESUMEN

Malaria remains a major threat to mankind due to the perpetual emergence of resistance against marketed drugs. Twenty-one pyrazolopyran-based inhibitors bearing terminal biphenyl, aryl sulfonamide, or aryl sulfone motifs were synthesized and tested towards serine hydroxymethyltransferase (SHMT), a key enzyme of the folate cycle. The best ligands inhibited Plasmodium falciparum (Pf) and Arabidopsis thaliana (At) SHMT in target, as well as PfNF54 strains in cell-based assays in the low nanomolar range (18-56 nm). Seven co-crystal structures with P. vivax (Pv) SHMT were solved at 2.2-2.6 Šresolution. We observed an unprecedented influence of the torsion angle of ortho-substituted biphenyl moieties on cell-based efficacy. The peculiar lipophilic character of the sulfonyl moiety was highlighted in the complexes with aryl sulfonamide analogues, which bind in their preferred staggered orientation. The results are discussed within the context of conformational preferences in the ligands.

11.
Antimicrob Agents Chemother ; 59(2): 1200-10, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25487807

RESUMEN

Limited information is available on the pharmacokinetic (PK) and pharmacodynamic (PD) parameters driving the efficacy of antimalarial drugs. Our objective in this study was to determine dose-response relationships of a panel of related spiroindolone analogs and identify the PK-PD index that correlates best with the efficacy of KAE609, a selected class representative. The dose-response efficacy studies were conducted in the Plasmodium berghei murine malaria model, and the relationship between dose and efficacy (i.e., reduction in parasitemia) was examined. All spiroindolone analogs studied displayed a maximum reduction in parasitemia, with 90% effective dose (ED90) values ranging between 6 and 38 mg/kg of body weight. Further, dose fractionation studies were conducted for KAE609, and the relationship between PK-PD indices and efficacy was analyzed. The PK-PD indices were calculated using the in vitro potency against P. berghei (2× the 99% inhibitory concentration [IC99]) as a threshold (TRE). The percentage of the time in which KAE609 plasma concentrations remained at >2× the IC99 within 48 h (%T>TRE) and the area under the concentration-time curve from 0 to 48 h (AUC0-48)/TRE ratio correlated well with parasite reduction (R2=0.97 and 0.95, respectively) but less so for the maximum concentration of drug in serum (Cmax)/TRE ratio (R2=0.88). The present results suggest that for KAE609 and, supposedly, for its analogs, the dosing regimens covering a T>TRE of 100%, AUC0-48/TRE ratio of 587, and a Cmax/TRE ratio of 30 are likely to result in the maximum reduction in parasitemia in the P. berghei malaria mouse model. This information could be used to prioritize analogs within the same class of compounds and contribute to the design of efficacy studies, thereby facilitating early drug discovery and lead optimization programs.


Asunto(s)
Antimaláricos/farmacocinética , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/patogenicidad , Animales , Modelos Animales de Enfermedad , Femenino , Malaria/sangre , Ratones
12.
Chembiochem ; 16(17): 2433-6, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26472355

RESUMEN

Malaria continues to be one of the most devastating human diseases despite many efforts to limit its spread by prevention of infection or by pharmaceutical treatment of patients. We have conducted a screen for antiplasmodial compounds by using a natural product library. Here we report on cyclomarin A as a potent growth inhibitor of Plasmodium falciparum and the identification of its molecular target, diadenosine triphosphate hydrolase (PfAp3Aase), by chemical proteomics. Using a biochemical assay, we could show that cyclomarin A is a specific inhibitor of the plasmodial enzyme but not of the closest human homologue hFHIT. Co-crystallisation experiments demonstrate a unique binding mode of the inhibitor. One molecule of cyclomarin A binds a dimeric PfAp3Aase and prevents the formation of the enzyme⋅substrate complex. These results validate PfAp3Aase as a new drug target for the treatment of malaria. We have previously elucidated the structurally unrelated regulatory subunit ClpC1 of the ClpP protease as the molecular target of cyclomarin A in Mycobacterium tuberculosis. Thus, cyclomarin A is a rare example of a natural product with two distinct and specific modes of action.


Asunto(s)
Productos Biológicos/química , Oligopéptidos/química , Ácido Anhídrido Hidrolasas/antagonistas & inhibidores , Ácido Anhídrido Hidrolasas/metabolismo , Antimaláricos/química , Antimaláricos/metabolismo , Antimaláricos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Sitios de Unión , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Endopeptidasa Clp/antagonistas & inhibidores , Endopeptidasa Clp/metabolismo , Humanos , Concentración 50 Inhibidora , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Oligopéptidos/metabolismo , Oligopéptidos/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Plasmodium falciparum/crecimiento & desarrollo , Unión Proteica , Estructura Terciaria de Proteína
13.
J Biol Chem ; 288(38): 27002-27018, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23913689

RESUMEN

In eukaryotic organisms, cysteine palmitoylation is an important reversible modification that impacts protein targeting, folding, stability, and interactions with partners. Evidence suggests that protein palmitoylation contributes to key biological processes in Apicomplexa with the recent palmitome of the malaria parasite Plasmodium falciparum reporting over 400 substrates that are modified with palmitate by a broad range of protein S-acyl transferases. Dynamic palmitoylation cycles require the action of an acyl-protein thioesterase (APT) that cleaves palmitate from substrates and conveys reversibility to this posttranslational modification. In this work, we identified candidates for APT activity in Toxoplasma gondii. Treatment of parasites with low micromolar concentrations of ß-lactone- or triazole urea-based inhibitors that target human APT1 showed varied detrimental effects at multiple steps of the parasite lytic cycle. The use of an activity-based probe in combination with these inhibitors revealed the existence of several serine hydrolases that are targeted by APT1 inhibitors. The active serine hydrolase, TgASH1, identified as the homologue closest to human APT1 and APT2, was characterized further. Biochemical analysis of TgASH1 indicated that this enzyme cleaves substrates with a specificity similar to APTs, and homology modeling points toward an APT-like enzyme. TgASH1 is dispensable for parasite survival, which indicates that the severe effects observed with the ß-lactone inhibitors are caused by the inhibition of non-TgASH1 targets. Other ASH candidates for APT activity were functionally characterized, and one of them was found to be resistant to gene disruption due to the potential essential nature of the protein.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Lactonas/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Tioléster Hidrolasas/antagonistas & inhibidores , Toxoplasma/enzimología , Secuencia de Aminoácidos , Inhibidores Enzimáticos/química , Humanos , Lactonas/química , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Homología Estructural de Proteína , Tioléster Hidrolasas/química , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Toxoplasma/genética , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/enzimología , Toxoplasmosis/genética
14.
Antimicrob Agents Chemother ; 58(9): 5060-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24913172

RESUMEN

Renewed global efforts toward malaria eradication have highlighted the need for novel antimalarial agents with activity against multiple stages of the parasite life cycle. We have previously reported the discovery of a novel class of antimalarial compounds in the imidazolopiperazine series that have activity in the prevention and treatment of blood stage infection in a mouse model of malaria. Consistent with the previously reported activity profile of this series, the clinical candidate KAF156 shows blood schizonticidal activity with 50% inhibitory concentrations of 6 to 17.4 nM against P. falciparum drug-sensitive and drug-resistant strains, as well as potent therapeutic activity in a mouse models of malaria with 50, 90, and 99% effective doses of 0.6, 0.9, and 1.4 mg/kg, respectively. When administered prophylactically in a sporozoite challenge mouse model, KAF156 is completely protective as a single oral dose of 10 mg/kg. Finally, KAF156 displays potent Plasmodium transmission blocking activities both in vitro and in vivo. Collectively, our data suggest that KAF156, currently under evaluation in clinical trials, has the potential to treat, prevent, and block the transmission of malaria.


Asunto(s)
Antimaláricos/farmacología , Imidazoles/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/transmisión , Piperazinas/farmacología , Animales , Concentración 50 Inhibidora , Ratones , Ratones Endogámicos ICR , Plasmodium falciparum/efectos de los fármacos , Esporozoítos/efectos de los fármacos
15.
Angew Chem Int Ed Engl ; 53(27): 7079-84, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24895172

RESUMEN

The discovery of pyrrolopyrazines as potent antimalarial agents is presented, with the most effective compounds exhibiting EC50 values in the low nanomolar range against asexual blood stages of Plasmodium falciparum in human red blood cells, and Plasmodium berghei liver schizonts, with negligible HepG2 cytotoxicity. Their potential mode of action is uncovered by predicting macromolecular targets through avant-garde computer modeling. The consensus prediction method suggested a functional resemblance between ligand binding sites in non-homologous target proteins, linking the observed parasite elimination to IspD, an enzyme from the non-mevalonate pathway of isoprenoid biosynthesis, and multi-kinase inhibition. Further computational analysis suggested essential P. falciparum kinases as likely targets of our lead compound. The results obtained validate our methodology for ligand- and structure-based target prediction, expand the bioinformatics toolbox for proteome mining, and provide unique access to deciphering polypharmacological effects of bioactive chemical agents.


Asunto(s)
Antimaláricos/química , Piridazinas/química , Pirroles/química , Antimaláricos/toxicidad , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Eritrocitos/parasitología , Células Hep G2 , Humanos , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Piridazinas/toxicidad , Pirroles/toxicidad
16.
Angew Chem Int Ed Engl ; 53(8): 2235-9, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24446431

RESUMEN

The enzymes of the non-mevalonate pathway for isoprenoid biosynthesis have been identified as attractive targets with novel modes of action for the development of herbicides for crop protection and agents against infectious diseases. This pathway is present in many pathogenic organisms and plants, but absent in mammals. By using high-throughput screening, we identified highly halogenated marine natural products, the pseudilins, to be inhibitors of the third enzyme, IspD, in the pathway. Their activity against the IspD enzymes from Arabidopsis thaliana and Plasmodium vivax was determined in photometric and NMR-based assays. Cocrystal structures revealed that pseudilins bind to an allosteric pocket by using both divalent metal ion coordination and halogen bonding. The allosteric mode of action for preventing cosubstrate (CTP) binding at the active site was elucidated. Pseudilins show herbicidal activity in plant assays and antiplasmodial activity in cell-based assays.


Asunto(s)
Productos Biológicos/metabolismo , Ácido Mevalónico/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Protozoarias/metabolismo , Alcaloides/química , Alcaloides/metabolismo , Regulación Alostérica , Sitio Alostérico , Arabidopsis/enzimología , Sitios de Unión , Productos Biológicos/química , Halogenación , Herbicidas/química , Herbicidas/metabolismo , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Complejos Multienzimáticos/antagonistas & inhibidores , Proteínas de Plantas/antagonistas & inhibidores , Plasmodium vivax/enzimología , Estructura Terciaria de Proteína , Proteínas Protozoarias/antagonistas & inhibidores
17.
Chemistry ; 19(1): 155-64, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23161835

RESUMEN

The increasing prevalence of multidrug-resistant strains of the malarial parasite Plasmodium falciparum requires the urgent development of new therapeutic agents with novel modes of action. The vacuolar malarial aspartic proteases plasmepsin (PM) I, II, and IV are involved in hemoglobin degradation and play a central role in the growth and maturation of the parasite in the human host. We report the structure-based design, synthesis, and in vitro evaluation of a new generation of PM inhibitors featuring a highly decorated 7-azabicyclo[2.2.1]heptane core. While this protonated central core addresses the catalytic Asp dyad, three substituents bind to the flap, the S1/S3, and the S1' pockets of the enzymes. A hydroformylation reaction is the key synthetic step for the introduction of the new vector reaching into the S1' pocket. The configuration of the racemic ligands was confirmed by extensive NMR and X-ray crystallographic analysis. In vitro biological assays revealed high potency of the new inhibitors against the three plasmepsins (IC(50) values down to 6 nM) and good selectivity towards the closely related human cathepsins D and E. The occupancy of the S1' pocket makes an essential contribution to the gain in binding affinity and selectivity, which is particularly large in the case of the PM IV enzyme. Designing non-peptidic ligands for PM II is a valid route to generate compounds that inhibit the entire family of vacuolar plasmepsins.


Asunto(s)
Antimaláricos/química , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Compuestos Aza/síntesis química , Compuestos Bicíclicos con Puentes/síntesis química , Formaldehído/química , Heptanos/síntesis química , Plasmodium falciparum/enzimología , Inhibidores de Proteasas/química , Antimaláricos/síntesis química , Antimaláricos/metabolismo , Antimaláricos/farmacología , Ácido Aspártico Endopeptidasas/química , Ácido Aspártico Endopeptidasas/metabolismo , Compuestos Aza/química , Compuestos Aza/farmacología , Compuestos Bicíclicos con Puentes/química , Compuestos Bicíclicos con Puentes/farmacología , Heptanos/química , Heptanos/farmacología , Humanos , Modelos Moleculares , Plasmodium falciparum/efectos de los fármacos , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , Estereoisomerismo
18.
Elife ; 122023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37934560

RESUMEN

Plasmodium falciparum accounts for the majority of over 600,000 malaria-associated deaths annually. Parasites resistant to nearly all antimalarials have emerged and the need for drugs with alternative modes of action is thus undoubted. The FK506-binding protein PfFKBP35 has gained attention as a promising drug target due to its high affinity to the macrolide compound FK506 (tacrolimus). Whilst there is considerable interest in targeting PfFKBP35 with small molecules, a genetic validation of this factor as a drug target is missing and its function in parasite biology remains elusive. Here, we show that limiting PfFKBP35 levels are lethal to P. falciparum and result in a delayed death-like phenotype that is characterized by defective ribosome homeostasis and stalled protein synthesis. Our data furthermore suggest that FK506, unlike the action of this drug in model organisms, exerts its antiproliferative activity in a PfFKBP35-independent manner and, using cellular thermal shift assays, we identify putative FK506-targets beyond PfFKBP35. In addition to revealing first insights into the function of PfFKBP35, our results show that FKBP-binding drugs can adopt non-canonical modes of action - with major implications for the development of FK506-derived molecules active against Plasmodium parasites and other eukaryotic pathogens.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Tacrolimus , Antibacterianos , Sistemas de Liberación de Medicamentos , Homeostasis , Proteínas de Unión a Tacrolimus
19.
Malar J ; 11: 230, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22799500

RESUMEN

BACKGROUND: Severe malaria has been attributed to the expression of a restricted subset of the var multi-gene family, which encodes for Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 mediates cytoadherence and sequestration of infected erythrocytes into the post-capillary venules of vital organs such as the brain, lung or placenta. var genes are highly diverse and can be classified in three major groups (ups A, B and C) and two intermediate groups (B/A and B/C) based on the genomic location, gene orientation and upstream sequences. The genetic diversity of expressed var genes in relation to severity of disease in Tanzanian children was analysed. METHODS: Children with defined severe (SM) and asymptomatic malaria (AM) were recruited. Full-length var mRNA was isolated and reversed transcribed into var cDNA. Subsequently, the DBL and N-terminal domains, and up-stream sequences were PCR amplified, cloned and sequenced. Sequences derived from SM and AM isolates were compared and analysed. RESULTS: The analysis confirmed that the var family is highly diverse in natural Plasmodium falciparum populations. Sequence diversity of amplified var DBL-1α and upstream regions showed minimal overlap among isolates, implying that the var gene repertoire is vast and most probably indefinite in endemic areas. var DBL-1α sequences from AM isolates were more diverse with more singletons found (p<0.05) than those from SM infections. Furthermore, few var DBL-1α sequences from SM patients were rare and restricted suggesting that certain PfEMP1 variants might induce severe disease. CONCLUSIONS: The genetic sequence diversity of var genes of P. falciparum isolates from Tanzanian children is large and its relationship to disease severity has been studied. Observed differences suggest that different var genes might have fundamentally different roles in the host-parasite interaction. Further research is required to examine clear disease-associations of var gene subsets in different geographical settings. The importance of very strict clinical definitions and appropriate large control groups needs to be emphasized for future studies on disease associations of PfEMP1.


Asunto(s)
Variación Genética , Malaria Falciparum/patología , Plasmodium falciparum/clasificación , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Preescolar , Análisis por Conglomerados , ADN Complementario/genética , ADN Protozoario/química , ADN Protozoario/genética , Femenino , Genotipo , Humanos , Lactante , Masculino , Filogenia , Plasmodium falciparum/aislamiento & purificación , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación , Transcripción Reversa , Análisis de Secuencia de ADN , Tanzanía
20.
Org Biomol Chem ; 10(30): 5764-8, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22336919

RESUMEN

A series of aryl nitrile-based ligands were prepared to investigate the effect of their electrophilicity on the affinity against the cysteine proteases rhodesain and human cathepsin L. Density functional theory calculations provided relative reactivities of the nitriles, enabling prediction of their biological affinity and cytotoxicity and a clear structure-activity relationship.


Asunto(s)
Catepsina L/antagonistas & inhibidores , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/farmacología , Diseño de Fármacos , Nitrilos/química , Nitrilos/farmacología , Dominio Catalítico , Catepsina L/química , Cisteína Endopeptidasas/química , Inhibidores de Cisteína Proteinasa/síntesis química , Humanos , Modelos Moleculares , Nitrilos/síntesis química , Trypanosoma brucei brucei/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA