Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nature ; 618(7963): 102-109, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225985

RESUMEN

Parasitic nematodes are a major threat to global food security, particularly as the world amasses 10 billion people amid limited arable land1-4. Most traditional nematicides have been banned owing to poor nematode selectivity, leaving farmers with inadequate means of pest control4-12. Here we use the model nematode Caenorhabditis elegans to identify a family of selective imidazothiazole nematicides, called selectivins, that undergo cytochrome-p450-mediated bioactivation in nematodes. At low parts-per-million concentrations, selectivins perform comparably well with commercial nematicides to control root infection by Meloidogyne incognita, a highly destructive plant-parasitic nematode. Tests against numerous phylogenetically diverse non-target systems demonstrate that selectivins are more nematode-selective than most marketed nematicides. Selectivins are first-in-class bioactivated nematode controls that provide efficacy and nematode selectivity.


Asunto(s)
Antinematodos , Tylenchoidea , Animales , Humanos , Antinematodos/química , Antinematodos/metabolismo , Antinematodos/farmacología , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Tylenchoidea/efectos de los fármacos , Tylenchoidea/metabolismo , Tiazoles/química , Tiazoles/metabolismo , Tiazoles/farmacología , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/parasitología , Enfermedades de las Plantas , Especificidad de la Especie , Especificidad por Sustrato
2.
PLoS Genet ; 19(11): e1011008, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37930961

RESUMEN

The cuticles of ecdysozoan animals are barriers to material loss and xenobiotic insult. Key to this barrier is lipid content, the establishment of which is poorly understood. Here, we show that the p-glycoprotein PGP-14 functions coincidently with the sphingomyelin synthase SMS-5 to establish a polar lipid barrier within the pharyngeal cuticle of the nematode C. elegans. We show that PGP-14 and SMS-5 are coincidentally expressed in the epithelium that surrounds the anterior pharyngeal cuticle where PGP-14 localizes to the apical membrane. pgp-14 and sms-5 also peak in expression at the time of new cuticle synthesis. Loss of PGP-14 and SMS-5 dramatically reduces pharyngeal cuticle staining by Nile Red, a key marker of polar lipids, and coincidently alters the nematode's response to a wide-range of xenobiotics. We infer that PGP-14 exports polar lipids into the developing pharyngeal cuticle in an SMS-5-dependent manner to safeguard the nematode from environmental insult.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Lípidos , Permeabilidad
3.
Microb Cell Fact ; 21(1): 280, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36587193

RESUMEN

BACKGROUND: Over the 70 years since the introduction of plastic into everyday items, plastic waste has become an increasing problem. With over 360 million tonnes of plastics produced every year, solutions for plastic recycling and plastic waste reduction are sorely needed. Recently, multiple enzymes capable of degrading PET (polyethylene terephthalate) plastic have been identified and engineered. In particular, the enzymes PETase and MHETase from Ideonella sakaiensis depolymerize PET into the two building blocks used for its synthesis, ethylene glycol (EG) and terephthalic acid (TPA). Importantly, EG and TPA can be re-used for PET synthesis allowing complete and sustainable PET recycling. RESULTS: In this study we used Saccharomyces cerevisiae, a species utilized widely in bioindustrial fermentation processes, as a platform to develop a whole-cell catalyst expressing the MHETase enzyme, which converts monohydroxyethyl terephthalate (MHET) into TPA and EG. We assessed six expression architectures and identified those resulting in efficient MHETase expression on the yeast cell surface. We show that the MHETase whole-cell catalyst has activity comparable to recombinant MHETase purified from Escherichia coli. Finally, we demonstrate that surface displayed MHETase is active across a range of pHs, temperatures, and for at least 12 days at room temperature. CONCLUSIONS: We demonstrate the feasibility of using S. cerevisiae as a platform for the expression and surface display of PET degrading enzymes and predict that the whole-cell catalyst will be a viable alternative to protein purification-based approaches for plastic degradation.


Asunto(s)
Hidrolasas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Hidrolasas/metabolismo , Glicol de Etileno , Plásticos/metabolismo
4.
PLoS Genet ; 12(4): e1006010, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27123983

RESUMEN

The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle's plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adhesión Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Netrinas , Unión Neuromuscular/fisiología , Transporte de Proteínas/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/genética
5.
PLoS Genet ; 10(8): e1004521, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25122090

RESUMEN

We recently discovered a secreted and diffusible midline cue called MADD-4 (an ADAMTSL) that guides migrations along the dorsoventral axis of the nematode Caenorhabditis elegans. We showed that the transmembrane receptor, UNC-40 (DCC), whose canonical ligand is the UNC-6 (netrin) guidance cue, is required for extension towards MADD-4. Here, we demonstrate that MADD-4 interacts with an EVA-1/UNC-40 co-receptor complex to attract cell extensions. EVA-1 is a conserved transmembrane protein with predicted galactose-binding lectin domains. EVA-1 functions in the same pathway as MADD-4, physically interacts with both MADD-4 and UNC-40, and enhances UNC-40's sensitivity to the MADD-4 cue. This enhancement is especially important in the presence of UNC-6. In EVA-1's absence, UNC-6 interferes with UNC-40's responsiveness to MADD-4; in UNC-6's absence, UNC-40's responsiveness to MADD-4 is less dependent on EVA-1. By enabling UNC-40 to respond to MADD-4 in the presence of UNC-6, EVA-1 may increase the precision by which UNC-40-directed processes can reach their MADD-4-expressing targets within a field of the UNC-6 guidance cue.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular/metabolismo , Neuronas Motoras , Proteínas del Tejido Nervioso/metabolismo , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Moléculas de Adhesión Celular/biosíntesis , Moléculas de Adhesión Celular/genética , Movimiento Celular/genética , Factores Quimiotácticos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos/genética , Proteínas del Tejido Nervioso/genética
6.
Nat Commun ; 15(1): 5529, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956039

RESUMEN

Left unchecked, plant-parasitic nematodes have the potential to devastate crops globally. Highly effective but non-selective nematicides are justifiably being phased-out, leaving farmers with limited options for managing nematode infestation. Here, we report our discovery of a 1,3,4-oxadiazole thioether scaffold called Cyprocide that selectively kills nematodes including diverse species of plant-parasitic nematodes. Cyprocide is bioactivated into a lethal reactive electrophilic metabolite by specific nematode cytochrome P450 enzymes. Cyprocide fails to kill organisms beyond nematodes, suggesting that the targeted lethality of this pro-nematicide derives from P450 substrate selectivity. Our findings demonstrate that Cyprocide is a selective nematicidal scaffold with broad-spectrum activity that holds the potential to help safeguard our global food supply.


Asunto(s)
Antinematodos , Sistema Enzimático del Citocromo P-450 , Nematodos , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Nematodos/efectos de los fármacos , Antinematodos/farmacología , Sulfuros/farmacología , Sulfuros/química
7.
Nat Chem Biol ; 7(12): 891-3, 2011 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-22057127

RESUMEN

The DAF-9 cytochrome P450 is a key regulator of dauer formation, developmental timing and longevity in the nematode Caenorhabditis elegans. Here we describe the first identified chemical inhibitor of DAF-9 and the first reported small-molecule tool that robustly induces dauer formation in typical culture conditions. This molecule (called dafadine) also inhibits the mammalian ortholog of DAF-9(CYP27A1), suggesting that dafadine can be used to interrogate developmental control and longevity in other animals.


Asunto(s)
Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/crecimiento & desarrollo , Inhibidores Enzimáticos del Citocromo P-450 , Inhibidores Enzimáticos/farmacología , Isoxazoles/farmacología , Longevidad/efectos de los fármacos , Piperidinas/farmacología , Piridinas/farmacología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Isoxazoles/química , Larva/efectos de los fármacos , Estructura Molecular , Piperidinas/química , Piridinas/química , Estereoisomerismo , Relación Estructura-Actividad
8.
Nat Commun ; 14(1): 1816, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002199

RESUMEN

Nematode parasites of humans and livestock pose a significant burden to human health, economic development, and food security. Anthelmintic drug resistance is widespread among parasites of livestock and many nematode parasites of humans lack effective treatments. Here, we present a nitrophenyl-piperazine scaffold that induces motor defects rapidly in the model nematode Caenorhabditis elegans. We call this scaffold Nemacol and show that it inhibits the vesicular acetylcholine transporter (VAChT), a target recognized by commercial animal and crop health groups as a viable anthelmintic target. We demonstrate that it is possible to create Nemacol analogs that maintain potent in vivo activity whilst lowering their affinity to the mammalian VAChT 10-fold. We also show that Nemacol enhances the ability of the anthelmintic Ivermectin to paralyze C. elegans and the ruminant nematode parasite Haemonchus contortus. Hence, Nemacol represents a promising new anthelmintic scaffold that acts through a validated anthelmintic target.


Asunto(s)
Antihelmínticos , Nematodos , Animales , Humanos , Caenorhabditis elegans , Proteínas de Transporte Vesicular de Acetilcolina , Antihelmínticos/farmacología , Ivermectina/farmacología , Resistencia a Medicamentos , Mamíferos
9.
Nat Chem Biol ; 6(7): 549-57, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20512140

RESUMEN

The resistance of Caenorhabditis elegans to pharmacological perturbation limits its use as a screening tool for novel small bioactive molecules. One strategy to improve the hit rate of small-molecule screens is to preselect molecules that have an increased likelihood of reaching their target in the worm. To learn which structures evade the worm's defenses, we performed the first survey of the accumulation and metabolism of over 1,000 commercially available drug-like small molecules in the worm. We discovered that fewer than 10% of these molecules accumulate to concentrations greater than 50% of that present in the worm's environment. Using our dataset, we developed a structure-based accumulation model that identifies compounds with an increased likelihood of bioavailability and bioactivity, and we describe structural features that facilitate small-molecule accumulation in the worm. Preselecting molecules that are more likely to reach a target by first applying our model to the tens of millions of commercially available compounds will undoubtedly increase the success of future small-molecule screens with C. elegans.


Asunto(s)
Caenorhabditis elegans/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Preparaciones Farmacéuticas/metabolismo , Animales , Cromatografía Líquida de Alta Presión/métodos , Modelos Biológicos , Estructura Molecular , Preparaciones Farmacéuticas/química , Relación Estructura-Actividad
10.
Nature ; 441(7089): 91-5, 2006 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-16672971

RESUMEN

Small-molecule inhibitors of protein function are powerful tools for biological analysis and can lead to the development of new drugs. However, a major bottleneck in generating useful small-molecule tools is target identification. Here we show that Caenorhabditis elegans can provide a platform for both the discovery of new bioactive compounds and target identification. We screened 14,100 small molecules for bioactivity in wild-type worms and identified 308 compounds that induce a variety of phenotypes. One compound that we named nemadipine-A induces marked defects in morphology and egg-laying. Nemadipine-A resembles a class of widely prescribed anti-hypertension drugs called the 1,4-dihydropyridines (DHPs) that antagonize the alpha1-subunit of L-type calcium channels. Through a genetic suppressor screen, we identified egl-19 as the sole candidate target of nemadipine-A, a conclusion that is supported by several additional lines of evidence. egl-19 encodes the only L-type calcium channel alpha1-subunit in the C. elegans genome. We show that nemadipine-A can also antagonize vertebrate L-type calcium channels, demonstrating that worms and vertebrates share the orthologous protein target. Conversely, FDA-approved DHPs fail to elicit robust phenotypes, making nemadipine-A a unique tool to screen for genetic interactions with this important class of drugs. Finally, we demonstrate the utility of nemadipine-A by using it to reveal redundancy among three calcium channels in the egg-laying circuit. Our study demonstrates that C. elegans enables rapid identification of new small-molecule tools and their targets.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Bloqueadores de los Canales de Calcio/aislamiento & purificación , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Piridinas/farmacología , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacocinética , Felodipino/aislamiento & purificación , Felodipino/farmacocinética , Felodipino/farmacología , Oviposición/efectos de los fármacos , Fenotipo , Piridinas/química , Piridinas/aislamiento & purificación
11.
MicroPubl Biol ; 20222022.
Artículo en Inglés | MEDLINE | ID: mdl-35783576

RESUMEN

Unsupervised Uniform Manifold Approximation and Projection (UMAP) plots of single cell sequencing data from synchronized Caenorhabditis elegans larvae yield tissue-specific data clusters, some of which are plotted as elongated archipelagos. These archipelagos likely represent a single cell type. I show that the pharyngeal archipelagos express a myriad of asynchronous temporally regulated genes, which likely accounts for their elongated topology. With one archipelago, I show that there is a high correlation between a) the base pair distance between the binding sites of an archipelago-specific transcription factor (HLH-6) and the transcriptional start site of the targeted genes and b) the timing of peak gene expression of those genes that are expressed in an archipelago-specific manner. Despite the correlation being made with only four genes, it prompts the hypothesis that the physical distance between a transcription factor and the relevant transcription start site may be an important factor in determining the temporal onset of transcription and transcript abundance.

12.
J Vis Exp ; (179)2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35156662

RESUMEN

Plant-parasitic nematodes (PPNs) destroy over 12% of global food crops every year, which equates to roughly 157 billion dollars (USD) lost annually. With a growing global population and limited arable land, controlling PPN infestation is critical for food production. Compounding the challenge of maximizing crop yields are the mounting restrictions on effective pesticides because of a lack of nematode selectivity. Hence, developing new and safe chemical nematicides is vital to food security. In this protocol, the culture and collection of the PPN species Ditylenchus dipsaci are demonstrated. D. dipsaci is both economically damaging and relatively resistant to most modern nematicides. The current work also explains how to use these nematodes in screens for novel small molecule nematicides and reports on data collection and analysis methodologies. The demonstrated pipeline affords a throughput of thousands of compounds per week and can be easily adapted for use with other PPN species such as Pratylenchus penetrans. The techniques described herein can be used to discover new nematicides, which may, in turn, be further developed into highly selective commercial products that safely combat PPNs to help feed an increasingly hungry world.


Asunto(s)
Parásitos , Tylenchida , Tylenchoidea , Animales , Productos Agrícolas
13.
Elife ; 112022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36259463

RESUMEN

How the cuticles of the roughly 4.5 million species of ecdysozoan animals are constructed is not well understood. Here, we systematically mine gene expression datasets to uncover the spatiotemporal blueprint for how the chitin-based pharyngeal cuticle of the nematode Caenorhabditis elegans is built. We demonstrate that the blueprint correctly predicts expression patterns and functional relevance to cuticle development. We find that as larvae prepare to molt, catabolic enzymes are upregulated and the genes that encode chitin synthase, chitin cross-linkers, and homologs of amyloid regulators subsequently peak in expression. Forty-eight percent of the gene products secreted during the molt are predicted to be intrinsically disordered proteins (IDPs), many of which belong to four distinct families whose transcripts are expressed in overlapping waves. These include the IDPAs, IDPBs, and IDPCs, which are introduced for the first time here. All four families have sequence properties that drive phase separation and we demonstrate phase separation for one exemplar in vitro. This systematic analysis represents the first blueprint for cuticle construction and highlights the massive contribution that phase-separating materials make to the structure.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Muda , Proteínas , Larva/metabolismo , Quitina , Proteínas de Caenorhabditis elegans/metabolismo
14.
Nat Commun ; 13(1): 5653, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163337

RESUMEN

Microsporidia are a diverse group of fungal-related obligate intracellular parasites that infect most animal phyla. Despite the emerging threat that microsporidia represent to humans and agricultural animals, few reliable treatment options exist. Here, we develop a high-throughput screening method for the identification of chemical inhibitors of microsporidia infection, using liquid cultures of Caenorhabditis elegans infected with the microsporidia species Nematocida parisii. We screen a collection of 2560 FDA-approved compounds and natural products, and identify 11 candidate microsporidia inhibitors. Five compounds prevent microsporidia infection by inhibiting spore firing, whereas one compound, dexrazoxane, slows infection progression. The compounds have in vitro activity against several other microsporidia species, including those known to infect humans. Together, our results highlight the effectiveness of C. elegans as a model host for drug discovery against intracellular pathogens, and provide a scalable high-throughput system for the identification and characterization of microsporidia inhibitors.


Asunto(s)
Productos Biológicos , Dexrazoxano , Microsporidios , Microsporidiosis , Animales , Caenorhabditis elegans , Proliferación Celular , Humanos
15.
Commun Biol ; 5(1): 865, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002479

RESUMEN

Nematode parasites of humans, livestock and crops dramatically impact human health and welfare. Alarmingly, parasitic nematodes of animals have rapidly evolved resistance to anthelmintic drugs, and traditional nematicides that protect crops are facing increasing restrictions because of poor phylogenetic selectivity. Here, we exploit multiple motor outputs of the model nematode C. elegans towards nematicide discovery. This work yielded multiple compounds that selectively kill and/or immobilize diverse nematode parasites. We focus on one compound that induces violent convulsions and paralysis that we call nementin. We find that nementin stimulates neuronal dense core vesicle release, which in turn enhances cholinergic signaling. Consequently, nementin synergistically enhances the potency of widely-used non-selective acetylcholinesterase (AChE) inhibitors, but in a nematode-selective manner. Nementin therefore has the potential to reduce the environmental impact of toxic AChE inhibitors that are used to control nematode infections and infestations.


Asunto(s)
Caenorhabditis elegans , Nematodos , Acetilcolinesterasa , Animales , Antinematodos/farmacología , Humanos , Neurotransmisores , Filogenia
16.
PLoS Genet ; 4(2): e1000005, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18454192

RESUMEN

Pseudomonas aeruginosa is an opportunistic human pathogen that is a key factor in the mortality of cystic fibrosis patients, and infection represents an increased threat for human health worldwide. Because resistance of Pseudomonas aeruginosa to antibiotics is increasing, new inhibitors of pharmacologically validated targets of this bacterium are needed. Here we demonstrate that a cell-based yeast phenotypic assay, combined with a large-scale inhibitor screen, identified small molecule inhibitors that can suppress the toxicity caused by heterologous expression of selected Pseudomonas aeruginosa ORFs. We identified the first small molecule inhibitor of Exoenzyme S (ExoS), a toxin involved in Type III secretion. We show that this inhibitor, exosin, modulates ExoS ADP-ribosyltransferase activity in vitro, suggesting the inhibition is direct. Moreover, exosin and two of its analogues display a significant protective effect against Pseudomonas infection in vivo. Furthermore, because the assay was performed in yeast, we were able to demonstrate that several yeast homologues of the known human ExoS targets are likely ADP-ribosylated by the toxin. For example, using an in vitro enzymatic assay, we demonstrate that yeast Ras2p is directly modified by ExoS. Lastly, by surveying a collection of yeast deletion mutants, we identified Bmh1p, a yeast homologue of the human FAS, as an ExoS cofactor, revealing that portions of the bacterial toxin mode of action are conserved from yeast to human. Taken together, our integrated cell-based, chemical-genetic approach demonstrates that such screens can augment traditional drug screening approaches and facilitate the discovery of new compounds against a broad range of human pathogens.


Asunto(s)
ADP Ribosa Transferasas/antagonistas & inhibidores , Toxinas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Pseudomonas aeruginosa/enzimología , ADP Ribosa Transferasas/genética , Inhibidores de Adenilato Ciclasa , Adenilil Ciclasas/genética , Animales , Antibacterianos/química , Antibacterianos/farmacología , Toxinas Bacterianas/genética , Células CHO , Cricetinae , Cricetulus , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/química , Expresión Génica , Genes Bacterianos , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Sistemas de Lectura Abierta , Fenotipo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Virulencia/genética
17.
Sci Rep ; 11(1): 9161, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911106

RESUMEN

Over one billion people are currently infected with a parasitic nematode. Symptoms can include anemia, malnutrition, developmental delay, and in severe cases, death. Resistance is emerging to the anthelmintics currently used to treat nematode infection, prompting the need to develop new anthelmintics. Towards this end, we identified a set of kinases that may be targeted in a nematode-selective manner. We first screened 2040 inhibitors of vertebrate kinases for those that impair the model nematode Caenorhabditis elegans. By determining whether the terminal phenotype induced by each kinase inhibitor matched that of the predicted target mutant in C. elegans, we identified 17 druggable nematode kinase targets. Of these, we found that nematode EGFR, MEK1, and PLK1 kinases have diverged from vertebrates within their drug-binding pocket. For each of these targets, we identified small molecule scaffolds that may be further modified to develop nematode-selective inhibitors. Nematode EGFR, MEK1, and PLK1 therefore represent key targets for the development of new anthelmintic medicines.


Asunto(s)
Antihelmínticos/farmacología , Caenorhabditis elegans/enzimología , Evaluación Preclínica de Medicamentos/métodos , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antihelmínticos/química , Caenorhabditis elegans/efectos de los fármacos , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Vertebrados
18.
Dev Cell ; 9(3): 307-8, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16139218

RESUMEN

The functional module is fast becoming the operational unit of the postgenomics era. A new report in Nature by Gunsalus and colleagues describes, using a multiply supported network, functional modules within early C. elegans embryos and identifies several new components of known molecular machines (Gunsalus et al., 2005).


Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/fisiología , Biología Computacional , Desarrollo Embrionario , Animales , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , ARN Mensajero/genética
20.
Nat Commun ; 10(1): 3938, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477732

RESUMEN

The nematode Caenorhabditis elegans is a bacterivore filter feeder. Through the contraction of the worm's pharynx, a bacterial suspension is sucked into the pharynx's lumen. Excess liquid is then shunted out of the buccal cavity through ancillary channels made by surrounding marginal cells. We find that many worm-bioactive small molecules (a.k.a. wactives) accumulate inside of the marginal cells as crystals or globular spheres. Through screens for mutants that resist the lethality associated with one crystallizing wactive we identify a presumptive sphingomyelin-synthesis pathway that is necessary for crystal and sphere accumulation. We find that expression of sphingomyelin synthase 5 (SMS-5) in the marginal cells is not only sufficient for wactive accumulation but is also important for absorbing exogenous cholesterol, without which C. elegans cannot develop. We conclude that sphingomyelin-rich marginal cells act as a sink to scavenge important nutrients from filtered liquid that might otherwise be shunted back into the environment.


Asunto(s)
Caenorhabditis elegans/metabolismo , Colesterol/metabolismo , Faringe/metabolismo , Esfingomielinas/metabolismo , Animales , Bacterias/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Cristalización , Interacciones Hidrofóbicas e Hidrofílicas , Mutación , Faringe/citología , Esfingomielinas/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA