Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 250: 118529, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38395335

RESUMEN

Due to adverse impact of the global warming on hydrological resources, we intended to document the hydrogeochemical evolutions of surface and groundwater at tropical central-south Mexico in terms of seasonality of rock-water interaction, precipitation/evaporation variation and moisture source by evaluating the major ion chemistry in Piper and Gibbs plots, Durov diagram and through estimation of the chloro-alkaline indices as well as assessing the stable isotope compositions (δ18O and δ2H) in samples from different seasons of a year. Surface water of the Lake Coatetelco shifted from mostly Ca-Mg-HCO3 facies in wet summer-autumn to Na-HCO3-Cl facies in the dry spring due to elevated Na, Cl and HCO3. Greater evaporation in spring led to a maximum δ18O enrichment of ca.7‰ compared to the other seasons, and much depleted deuterium excess (-40.92‰ to -39.20‰). Interaction of the lake water with subsurface carbonate lithologies, and comparable isotopic compositions reflected the enhanced interaction between the surface water body and aquifers in the wet autumn. Effect of seasonality, however, was unclear on the groundwater facies, and its heterogenous composition (Ca-Mg-HCO3, Na-HCO3-Cl and Na-HCO3) reflected the interactions with different lithologies. Fractionations in isotope compositions of the groundwater were caused from recharge at different elevations, seasonality of moisture sources and moisture recycling. The water-mineral saturation index was an efficient proxy of seasonality as the lake water and groundwater (avg SIcalcite > 0.5) of the dry autumn were saturated with calcite. This vital information about carbonate precipitation, pCO2 and chemical facies would be useful for the better interpretation of paleoclimate archives in this region.


Asunto(s)
Deuterio , Agua Subterránea , Isótopos de Oxígeno , Estaciones del Año , México , Agua Subterránea/química , Agua Subterránea/análisis , Isótopos de Oxígeno/análisis , Deuterio/análisis , Monitoreo del Ambiente/métodos , Lagos/química
2.
Environ Monit Assess ; 196(2): 179, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244082

RESUMEN

This study aims to investigate and understand the temporal and spatial movement of seawater intrusion into the coastal aquifers. Groundwater salinity increase has affected the entire eastern part of the study area and is primarily influenced by direct and reverse ion exchange reactions associated with intrusion and freshwater influx phases, which alternate over monsoons. To gain insights into the spatiotemporal dynamics of the seawater intrusion process, hydrochemical facies analysis utilizing the HFE-Diagram was employed. Additionally, the study considered the major ionic changes during both the monsoons. The HFE-Diagram analysis of hydrochemical facies revealed distinctions in the behaviour of each coastal aquifer concerning seawater intrusion-induced salinization. In PRM 2020, the data shows that approximately 65% of the samples fall under the freshening phase, while the remaining 35% were categorized as intrusion phase. Within the freshening phase, seven different hydrochemical facies were identified, including Na-Cl, Na-MixCl, MixNa-MixCl, Na-MixHCO3/MixSO4, MixNa-MixSO4, Na-HCO3, and MixCa-HCO3. In contrast, the intrusion phase had four facies: MixCaMixHCO3, MixNa-Cl, Ca-Cl, and Na-Cl. Especially, the Na-Cl facies (f1) within the freshening phase attributed for the largest percentage, contributing 30% of the samples. In POM 2021, the distribution of samples shifted slightly, with approximately 72.5% belonging to the freshening phase and 27.5% to the intrusion phase. Within the freshening phase of POM 2021, five hydrochemical facies were identified: Na-Cl, Na-MixCl, Na-MixHCO3/MixSO4, MixNa-MixSO4, and Na-HCO3. The intrusion phase of POM 2021 had three facies: MixNa-Cl, Na-Cl, and MixCa-Cl. Similar to PRM 2020, the Na-Cl facies (f1) remained the most predominant in the freshening phase, comprising 30% of the samples. The relation between total dissolved solids (TDS) and various ionic ratios, such as HCO3-/Cl-, Na+/Cl-, Ca2+/Cl-, Mg2+/Cl-, K+/Cl-, and SO42-/Cl-, clearly demonstrates the presence of seawater influence within the coastal aquifers of the study area.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Facies , Monitoreo del Ambiente , Agua Subterránea/análisis , Agua de Mar/análisis , India , Salinidad , Iones/análisis , Sodio/análisis , Contaminantes Químicos del Agua/análisis
3.
Environ Res ; 236(Pt 2): 116791, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37524155

RESUMEN

Nitrate and fluoride are two of the most prevalent pollutants in drinking water and exposure to their high concentrations could cause methemoglobinemia and fluorosis. This study attempted to evaluate the groundwater quality (pH: 4.4-9) from a relatively understudied part of the southwestern coast in India (i.e., Alappuzha, Kerala state) and assessed the associated health risks from exposures to nitrate (0.2-5.8 mg/l) and fluoride (0.2-1.9 mg/l) present in the groundwater. Pollution index (PIG: 0.35-5.43) grouped about 21% samples in high pollution and very high pollution categories because of fluoride content above the WHO guidelines. The total hazard index (THI) for adult male (0.17-1.70; average: 0.75), adult female (0.19-1.85; average: 0.81) and children (0.35-3.40; average: 1.50) suggested more non-carcinogenic risks for children from 41.6% samples compared to adult male and female from 33.3% samples in the absence of any mitigation measure. These results provide additional data from the country with highest population and the largest groundwater use in the context of sustainability in availability and supply of groundwater under the increasing risks of population growth, climate change and industrial development.

4.
Environ Res ; 203: 111847, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34384751

RESUMEN

Climate models for the 21st century project further reduction in the warm season precipitation and more frequent droughts across Mexico. In the possible scenario of enhanced aridity from global warming, the δ18O (-10.6 to -6.3 ‰) and δ2H (-71.1 to -57.1 ‰) compositions and deuterium-excess (0.2-14.6‰) of shallow groundwater from two different basins (Sandia and El Potosi) with similar geological and geomorphological settings were considered to evaluate the influences of early summer rainfall and later summer tropical storms on aquifers at water-scarce southeast margin of the Chihuahuan Desert. Groundwater of the Sandia Basin was recharged mainly from tropical storms. Higher CO2 partial pressure (log pCO2: -2.70 to -1.61) caused more gypsum dissolution (Ca-Mg-SO4 facies) and the effect of irrigation return flow (Ca-Mg-Cl facies) was minor. Even though the El Potosi Basin is in proximity, its groundwater was recharged from both the early and late summer precipitations. The multivariate factor analysis helped to separate the process of rock-water interactions from the recharge seasonality. Gypsum dissolution was less as the partial pressure of CO2 was comparatively lower (log pCO2: -3.01 to -2.15), and the ion exchange along with carbonate mineral dissolutions led to Ca-Mg-HCO3 facies. Over-exploitation under the condition of reduced warm season rainfall would continue to enhance the salinity of groundwater in this region. Hence, the drought mitigation policies should prioritize sustainability of the depleted aquifers and cultivation of salinity resistant crops.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Modelos Climáticos , Monitoreo del Ambiente , México , Agua , Contaminantes Químicos del Agua/análisis
5.
Ecotoxicol Environ Saf ; 229: 113061, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34902776

RESUMEN

The accurate evaluation of groundwater contamination vulnerability is essential for the management and prevention of groundwater contamination in the watershed. In this study, advanced multiple machine learning (ML) models of Radial Basis Neural Networks (RBNN), Support Vector Regression (SVR), and ensemble Random Forest Regression (RFR) were applied to determine the most accurate performance for the evaluation of groundwater contamination vulnerability. Eight vulnerability factors of DRASTIC-L were rated based on the modified DRASTIC model (MDM) and were used as input data. The adjusted vulnerability index (AVI) with nitrate values was used as output data for the modeling process. The performance of three models was verified using the statistical performance criteria of MAE, RMSE, r2, and ROC/AUC values. The ensemble RFR model showed the highest performance in comparison with standalone SVR and RBNN models. Specifically, ensemble RFR kept all promising solutions during the model performance due to its flexibility and robustness, and the vulnerability map obtained by the RFR model was more accurate for predicting the most vulnerable areas to contamination. It was concluded that ensemble RFR was a robust tool to enhance the evaluation of groundwater contamination vulnerability, and that it could contribute to environmental safety against groundwater contamination.


Asunto(s)
Agua Subterránea , Nitratos , Monitoreo del Ambiente , Aprendizaje Automático , Nitratos/análisis , Óxidos de Nitrógeno
6.
Environ Sci Policy ; 137: 70-74, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36060013

RESUMEN

The COVID-19 outbreak has boosted demand for and use of personal protective equipment (PPE) and other single-use plastics, adding to the environment's already high levels of plastic pollution and endangering biota. Estimating the relative abundance of PPE wastes that end up in the environment is crucial and has remained a challenge for COVID-19 researchers. Citizen science has been utilized in recent studies to monitor and collect data using volunteers, and it has proven to be a valuable approach even in difficult situations. The expansion of citizen scientific participation groups is important in light of the growing anthropogenic impacts of plastic pollution. To date, frontline sanitary personnel are often overlooked and underutilized in a citizen science perspective, yet they serve critical roles in maintaining cleanliness in key environmental settings (e.g., beaches and streets) both during and beyond the pandemic. This paper explores and emphasizes the advantages and need of including frontline sanitary personnel into citizen science for the benefit of both researchers and communities, as well as to encourage long-term goals in global plastic litter monitoring, thereby exemplifying citizen science opportunities. Recommendations are made to design in order to improve the future status of citizen science development.

7.
Environ Res ; 200: 111461, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34090891

RESUMEN

We assessed the groundwater quality in an industrial area (Tiruchendur Taluk) of Tamil Nadu state in coastal south India for human health risk from drinking as well as irrigation suitability by using the drinking water quality index (DWQI), irrigation factors (sodium adsorption ratio, sodium percentage, residual sodium carbonate and permeability index) and health hazard valuation (THQI- by consuming NO3- and F-). About 57% of the samples represented Ca2+-Mg2+-Cl--SO42- facies and the anthropological unhygienic inputs elevated the salinity. Our results indicated that all the samples are unsuitable for drinking (DWQI up to 1063) and almost half of them are also unsuitable for irrigation due to sodium risk. Total hazard quotient index (THQI; HQ nitrate and HQ fluoride) suggested the order of health risk as children > women > men with about 64%, 70% and 79% of the samples posing non-carcinogenic risks for men, women and children, respectively. Different mitigation measures and sustainable development should be enforced to minimize the health issues from contamination caused by industries, fertilizers in agro-fields and natural processes and reduce the sodium dominance in groundwater. The spatial distribution maps of this study could also be helpful in organization of proper treatment plans to provide safe and hygienic groundwater to the community.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Niño , Monitoreo del Ambiente , Femenino , Humanos , India , Masculino , Nitratos/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Calidad del Agua
8.
Environ Geochem Health ; 43(2): 757-770, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32052365

RESUMEN

Sub-surface water samples from the delta of Thamirabarani River of south India were evaluated for human health risks and seawater intrusion using the geochemical signatures. Electrical conductivity (EC), total dissolved solids (TDS), pH and the concentrations of major cations and anions in 40 samples collected during the winter (January) and summer (July) of 2018 show comparable values. Subsequently, the results were verified with respect to the international drinking water quality standards. The piper trilinear diagram shows mixed Ca-Mg-Cl, Na-Cl, Ca-HCO3 and mixed Ca-Na-HCO3 facies in the samples. Similarly, the plenteous of cations are sequenced as Na+ > Ca2+ > Mg2+ > K+ and the plenteous of anions are sequenced as Cl- > SO42- > HCO3->Br- > NO3- > PO4-. Gibbs plots illustrate that rock-water interaction and evaporation control the geochemistry of sub-surface water. More than 40% of the samples are unsuitable for drinking, and their higher EC and TDS values reflected the seawater intrusion, in addition to the anthropogenic activities (salt panning). Interrelationship between ions of sub-surface water was used to get a better insight into the saline water intrusion in the study area. To mitigate the river water salinization and seawater incursion in the aquifers, engineering solution such as weir construction across the Thamirabarani River near Mukkani village has been proposed. After construction of the weir, freshwater in the river can be diverted to the salt-affected and seawater-intruded areas to improve the scenario.


Asunto(s)
Agua Subterránea/química , Agua de Mar/química , Monitoreo del Ambiente/métodos , Humanos , India , Contaminantes Químicos del Agua/análisis , Calidad del Agua
9.
Ecotoxicol Environ Saf ; 194: 110438, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32171120

RESUMEN

The main objective of the present investigation is appraisal of human health hazard based on the intake and dermal contact of fluoride enriched potable groundwater used for rural water supply in a semi-arid region (Shanmuganadhi River basin) of south India. A variance decomposition based Sobol sensitivity method was used to assess the relative contribution as well as interaction of input variables for both oral and dermal models. Three different scores were evaluated: FOE (first order effect), SOE (second order effect) and TE (total effect) for different age groups of population including gender (kids, women and men). The spatio-temporal mapping indicates that about 26% of water supply wells exceeded the recommended limit (WHO) of fluoride (>1.5 mg l-1) for safe intake. These wells spread over 104.03 km2 area consisting 16 villages in the basin. To assess the human health risk related to fluoride enrichment in potable water, hazard index (HI) was calculated as per USEPA guidelines. The non-carcinogenic risk based on oral intake ranges from 0 to 1.81, from 0 to 1.59 and from 0 to 1.29 for kids, women and men respectively. Nearly 30%, 21% and 12% of well samples exceeded the upper permissible limit (HI > 1) for kids, women and men respectively. The Sobol sensitivity analysis reveals that, Cw (concentration of F- in water) and IR (intake rate) combination plays a vital role in the HQ oral model for the appraisal of health hazard in kids. However, these two parameters have negligible effect on health hazard for adult population (men and women). Therefore, lower age group people especially kids have significant ill effect due to the consumption of fluoride enriched potable water. The model output suggests that body weight (BW) has least effect on health hazard in the lower age group of population. Interestingly 'exposure frequency (EF)' and 'body weight (BW)' have not much effect on health hazards related to dermal contact, and 'skin surface area (SA)' has minimal effect for men (TE = 0.92) and women (TE = 1.26). However, 'SA' has vital effect for kids (TE = 17.39). Because of this, older age group people have more dermal risk than the younger people. Therefore, the HQ dermal results indicate that 49%, 64% and 67% of samples possess non-carcinogenic risk to the kids, women and men respectively.


Asunto(s)
Exposición a Riesgos Ambientales/estadística & datos numéricos , Fluoruros/análisis , Indicadores de Salud , Contaminantes Químicos del Agua/análisis , Contaminación del Agua/estadística & datos numéricos , Adulto , Niño , Exposición Dietética/estadística & datos numéricos , Agua Potable/análisis , Monitoreo del Ambiente/métodos , Femenino , Agua Subterránea/química , Humanos , India , Masculino , Minerales/análisis , Medición de Riesgo , Ríos , Abastecimiento de Agua/estadística & datos numéricos
10.
Environ Monit Assess ; 192(2): 102, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31915929

RESUMEN

Groundwater quality investigations were carried out in one of the urban parts of south India for fluoride and nitrate contaminations, with special focus on human health risk assessment for the rapidly growing and increasingly industrialized Coimbatore City. Twenty-five groundwater samples were collected and analyzed for physico-chemical parameters (EC, pH, TDS, Ca2+, Mg2+, Na+, K+, Cl-, SO42-, HCO3-, PO43-, NO3-, and F-) and the piper diagram characterized 60% of them as Ca-Mg-Cl type. Analysis of fluoride (0.1 to 2.4 mg/l) shows that 32% of the groundwater samples contain F- over the permissible limit, affecting a region of 122.10 km2. Nitrate (0.1 to 148 mg/l) is over the permissible limit in 44% of the groundwater samples spread over an area of 429.43 km2. The total hazard indices (THI) of non-carcinogenic risk for children (0.21 to 4.83), women (0.14 to 3.35), and men (0.12 to 2.90) shows some of the THI values are above the permissible limit of the US Environmental Protection Agency. The THI-based non-carcinogenic risks are 60%, 52%, and 48% for children, women, and men. This investigation suggests higher health risk for children and also recommends that proper management plan should be adopted to improve the drinking water quality in this region in order to avoid major health issues in the near future.


Asunto(s)
Fluoruros/análisis , Agua Subterránea/química , Nitratos/análisis , Contaminantes Químicos del Agua/análisis , Agua Potable/normas , Monitoreo del Ambiente , Fluoruros/normas , Humanos , India , Nitratos/normas , Óxidos de Nitrógeno/análisis , Sodio/análisis , Contaminantes Químicos del Agua/normas
12.
Sci Total Environ ; 856(Pt 2): 159164, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36195147

RESUMEN

The growing global concern about human exposure to microplastics necessitates research into their occurrence, fate, and effects. Recent advancements in analytical methods have fostered research and improved understanding of microplastics in a variety of human tissue and biological samples, including blood, liver, lung, placenta, kidney, spleen, sputum, and feces, etc. Given the rapid expansion of this research topic, it is imperative to assess and introduce them to a broader audience. This article for the first time conducts a systematic review of the literature on microplastics in human biological samples, their objectives, current efforts, and key findings. This review offers an in-depth analysis of the research approaches employed, spanning from sampling to detection to quantification of microplastics, as well as an overview of their occurrence and characteristics to understand the level of microplastic exposure in the human body. It also provides a detailed analysis of existing contamination control procedures and attempts to build consistent cross-contamination prevention measures. Finally, we provide the reader with the guidelines on current microplastic research strategies, highlighting future directions. Overall, this synthesis will assist researchers in developing a multifaceted understanding of contemporary microplastic investigations in human biological samples.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Monitoreo del Ambiente , Plásticos/análisis , Contaminantes Químicos del Agua/análisis
13.
Sci Total Environ ; 863: 161024, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36549527

RESUMEN

The ability to accurately characterize and collect data on household waste generation and composition is essential for promoting recycling and developing city management plans. However, traditional data collection approaches in developing countries are hampered by jurisdictional and budgetary constraints. Here, we explore whether citizen science projects that collaborate with waste collectors can solve this problem and be a viable tool for addressing household waste generation across temporal and geographic boundaries. In this regard, this first study evaluated recyclable household waste generation by engaging waste collectors both door-to-door individuals and trucks as citizen scientists daily in an urbanized colony (5797 inhabitants and 1747 houses) in Mexico City between September and October 2022. To understand their distribution and consumption patterns on a regional basis, we stratified the colony's households into 2 distinct non-overlapping sub zones and one Wednesday market based on waste collectors' routine using a Geographical Information System. Results show that for seven weeks, household waste constitutes up to 12.19 t of recyclables, ranging from 99.5 to 480.8 kg/day, with 35 % cardboard, 23 % PET plastics, 21 % hard plastics, 17 % glass, and 4 % aluminum. The average amount of recyclable waste produced was 54 g/person/day, resulting in an annual recycling generation of 114 t. Statistical analysis revealed that recyclable waste generation varied by day and subzone. Furthermore, informal centers rather than municipal waste disposal facilities are in charge of the final disposition of the collected recyclables, suggesting that a substantial waste proportion may go unaccounted for in the local government's annual MSW report and calling for the implementation of formal recycling sectors. Overall, this study show how effective waste collector engagement in science can be and imply that the proposed citizen science approach is vital for future waste projects and the generation of transparent datasets in developing cities.

14.
Environ Pollut ; 318: 120905, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549445

RESUMEN

Concern over microplastics has grown tremendously, and they have been found in all environmental compartments; yet, much remains unknown regarding their impact on a variety of human-consuming food products. Here, we contribute to ongoing research by screening the 15 most popular commercial brands of packaged food ice cubes in Mexico City for microplastics. Microplastics were detected in 100% of the samples evaluated, with concentrations ranging from 19 ± 4 to 178 ± 78 L-1. There was a significant difference in the microplastic concentration across samples. The mean microplastic concentration was 79 ± 47 L-1, and the main types were polypropylene, polyethylene, polyvinyl alcohol, tygon polymer, sealing ring gardena 2824 large, polyamide 6, and cellophane. Moreover, microplastics that are fibrous (87%), non-colored (54%), and less than 300 µm in size (63%), were found to be more prevalent. The SEM-EDX analysis showed heterogeneous structural and morphological characteristics of microplastics, as well as traces of Si, S, Ti, Ca, Al, and Na. Furthermore, we estimate that ice cube consumption in Mexico City can result in the inadvertent ingestion of 4.9 × 102 ± 3.4 × 102-1 × 104 ± 7.2 × 103 microplastics annually. The findings of the study revealed that microplastics were identified in ice cubes and can be conveyed to humans, stressing the need of managing and eradicating such contamination from our food.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos/análisis , Hielo/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
15.
Environ Pollut ; 332: 121961, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37277071

RESUMEN

Inadvertent human exposure to microplastics by the ingestion of microplastic-contaminated processed foods poses health risks and new preventative issues; nevertheless, investigations analyzing microplastic occurrences in commercially dried fish for direct human consumption are scarce. This study assessed the abundance and characteristics of microplastics in 25 commercially sold dried fish products (4 supermarkets, 3 street vendors, and 18 traditional agri-product farmers' markets) from two widely consumed and commercially important Chirostoma species (C. jordani and C. patzcuaro) in Mexico. Microplastics were detected in all the samples examined, with abundances ranging from 4.00 ± 0.94 to 55.33 ± 9.43 items g-1. C. jordani dried fish samples had higher mean microplastic abundance (15.17 ± 5.90 items g-1) than the C. patzcuaro dried fish samples (7.82 ± 2.90 items g-1); nevertheless, there was no statistically significant difference in microplastic concentrations between the samples. The most prevalent type of microplastic was fiber (67.55%), followed by fragment (29.18%), film (3.00%), and sphere (0.27%). Non-colored microplastics (67.35%) predominated, while microplastic sizes varied from 24 to 1670 µm, with sizes less than 500 µm (84%) being the most common. ATR-FTIR analysis revealed polyester, acrylonitrile butadiene styrene, polyvinyl alcohol, ethylene-propylene copolymer, nylon-6 (3), cellophane, and viscose in the dried fish samples. Overall, this study's findings are the first in Latin America to demonstrate microplastic contamination in dried fish for human consumption, underscoring the need for developing countermeasures to prevent plastic pollution in fish-caught regions and reduce the risks of human exposure to these micropollutants.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Animales , Microplásticos/análisis , Plásticos/análisis , México , Bocadillos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Peces
16.
Sci Total Environ ; 875: 162610, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36894090

RESUMEN

Understanding and communicating instances of microplastic contamination is critical for enabling plastic-free transitions. While microplastics research uses a variety of commercial chemicals and laboratory liquids, the impact of microplastics on these materials remains unknown. To fill this knowledge gap, the current study investigated microplastics abundance and their characteristics in laboratory waters (distilled, deionized, and Milli-Q), salts (NaCl and CaCl2), chemical solutions (H2O2, KOH and NaOH), and ethanol from various research laboratories and commercial brands. The mean abundance of microplastics in water, salt, chemical solutions, and ethanol samples was 30.21 ± 30.40 (L-1), 24.00 ± 19.00 (10 g-1), 187.00 ± 45.00 (L-1), and 27.63 ± 9.53 (L-1), respectively. Data comparisons revealed significant discrepancies between the samples in terms of microplastic abundance. Fibers (81 %) were the most common microplastics, followed by fragments (16 %) and films (3 %); 95 % of them were <500 µm, with the smallest and largest particle sizes recorded being 26 µm and 2.30 mm, respectively. Microplastic polymers discovered included polyethylene, polypropylene, polyester, nylon, acrylic, paint chips, cellophane, and viscose. These findings lay the groundwork for identifying common laboratory reagents as a potential contributor to microplastic contamination in samples, and we offer solutions that should be integrated into data processing to produce accurate results. Taken together, this study shows that commonly used reagents not only play a key role in the microplastic separation process but also contain microplastic contamination themselves, requiring the attention of researchers to promote quality control during microplastic analysis and commercial suppliers in formulating novel prevention strategies.

17.
Environ Sci Pollut Res Int ; 30(54): 115430-115447, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37884711

RESUMEN

Due to an increasing reduction of hydrological resources across Mexico and their growing contamination from global warming and anthropogenic activities, this study evaluated water from the perennial Lake Coatetelco (Ca-Mg-HCO3) in tropical central-southern Mexico and groundwater (Ca-Mg-HCO3 and Na-HCO3-Cl) from the surrounding wells for drinking as well as irrigation qualities. Comparison with the WHO guidelines and the estimated water quality indices (DWQI and IWQI) grouped almost all the samples collected after the warm season rainfall in excellent and good categories (DWQI < 100) for drinking, even though fluoride remained > 1.5 mg/L in 50% samples. Except for one groundwater sample, all showed > 25% permeability (classes I and II) in Donnen classification indicating their suitability for irrigation. USSL and Wilcox classifications, however, catalogued some in the high-salinity hazard group and some as doubtful for irrigating regular plants. Samples from about 53% wells were also in high and severe restriction categories of IWQI for the irrigation. Total Hazard Quotient Index (THQI) for estimating the non-carcinogenic risk (HQfluoride > 1) showed that at least one lake water sample and 53% of groundwater might expose the adult and child population to dental and skeletal fluorosis. This water quality assessment data posterior to the rainfall season could be useful as a baseline for both the short- and long-term monitoring in attention to the United Nation's Sustainable Development Goal 6.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Adulto , Niño , Humanos , Monitoreo del Ambiente , Fluoruros/análisis , Lagos , México , Contaminantes Químicos del Agua/análisis , Calidad del Agua
18.
Chemosphere ; 297: 134195, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35248595

RESUMEN

Multi-element composition including rare earth elements (REE) of surface sediment from the Devi river estuary, eastern coast of India, have been analysed in order to study the weathering characteristics and provenance of sediment along with their behaviour under different physicochemical conditions. These sediments with dominantly felsic provenance have undergone low to moderate chemical alterations. Bulk chemical composition is mainly represented by SiO2, Al2O3, Fe2O3 and K2O. Concentrations of Ba, Nb, Pb, Rb, Th and Zr are above their respective upper crustal abundances. High LREE/HREE ratio, negative Eu anomalies, and (La/Yb)n and (Tb/Yb)n values confirm that sediments are dominantly derived from the Eastern Ghat Group of rocks. Upper estuary sediments show negative Eu anomalies which is similar to that of the source. However, positive Eu anomaly is mostly observed in lower estuary. Contrasting Eu anomalies between upper- and lower-estuarine sediments are uncharacteristic of previously studied major global estuaries. Strong negative correlation between Mn and Eu suggests control of redox conditions over distribution of Eu. Concentration of REEs, Sc, Fe, Mo, V, Zn, Zr, Nb, U, Ti, Na and P increases up to 20 ppt salinity, and followed by declining trend towards mouth. This is mostly due to removal through flocculation of colloidal particles from water column during fresh- and saline-water interaction. This could be the first report about coagulation-based behaviour of Mo in estuarine environment. There is gradual decline in concentration of Cr, Co, Ni, Cu, Rb, Sr, Sb, Cs, Ba, Pb, Al, Mn, Mg, Ca and K with increase in salinity which is attributed to saline induced desorption of elements from sediments. The SiO2 content shows increasing trend towards mouth. Findings of this study highlight the importance of intrinsic physicochemical parameters, mainly salinity and redox condition, on governing geochemical behaviour of different elements including REE in mangrove dominated estuarine sediment.


Asunto(s)
Metales de Tierras Raras , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Estuarios , Sedimentos Geológicos/química , India , Plomo/análisis , Metales de Tierras Raras/análisis , Ríos/química , Dióxido de Silicio/análisis , Agua/análisis , Contaminantes Químicos del Agua/análisis
19.
J Hazard Mater ; 423(Pt B): 127171, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34537648

RESUMEN

The development and applications of effective analytical techniques for identification and quantification of microplastics in diverse spheres are increasing in the scientific arena. Nile Red (NR) staining has progressed as a low-cost, simple-to-use approach for analyzing the environmental impact of a wide spectrum of microplastics (e.g., ≥ 3 µm - ≤ 5 mm; polyethylene, polypropylene, and polyvinyl chloride etc.). Given the recent surge of research into this methodology, it is critical to examine the findings and present future directions. Herein, we review accomplishments to date of the current protocols describing the sample preparation, staining and fluorescence conditions, contamination measures, and data analysis based on 56 field observations focusing on microplastic pollution and NR staining technique. Additionally, we discuss the challenges in current analyses towards standardization and recommendations related to it. Finally, we conclude that, despite methodological discrepancies, the NR method has emerged as a viable standalone substitute for visual identification; yet not all that fluoresce with NR are microplastics, which necessitates extensive sample preparation or additional spectroscopy techniques for chemical analysis to validate the results. This article informs the reader about how the NR technique is advancing microplastic research and identifies current needs for future advancements.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Oxazinas , Plásticos , Contaminantes Químicos del Agua/análisis
20.
Environ Earth Sci ; 81(11): 316, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35668918

RESUMEN

The Santiago River (Jalisco) is a major waterway in western Mexico and has received considerable attention due to its severe pollution. Understanding the impact of reduced human activity on water quality in the Santiago River during the COVID-19 lockdown (April-May 2020) is critical for river management and restoration. However, there has been no published study in this context, presenting a significant knowledge gap. Hence, this study focuses on determining if the nationwide COVID-19 lockdown influenced or improved surface water quality in a 262-km stretch of the Santiago River upstream. Data for 15 water quality parameters collected during the lockdown were compared to levels obtained in 2019 (pre-lockdown), 2021 (unlock), and the previous eleven years (2009-2019). The values of turbidity, BOD, COD, TSS, f. coli, t. coli, nitrate, sulfate, and Pb decreased by 4-36%, while pH, EC, total nitrogen, and As increased by 0.3-21% during the lockdown compared to the pre-lockdown period, indicating a reduction in organic load in the river due to the temporary closure of industrial and commercial activities. An eleven-year comparison estimated a 0-38% decline in pH, TSS, COD, total nitrogen, sulfates, nitrates, and Pb. The unlock-period comparison showed a significant rise of 3-37% in all parameters except As, highlighting the potential repercussions of restoring activity along the Santiago River. Estimated water quality indices demonstrated short-term improvements in river water quality during the lockdown when compared to other time periods investigated. According to factor analysis, the main pollution sources influencing river water quality were untreated household sewage, industrial wastewater, and agricultural effluents. Overall, our analysis showed that the COVID-19-imposed lockdown improved the water quality of the Santiago River, laying the groundwork for local officials to identify pollution sources and better support environmental policies and water quality improvement plans. Supplementary Information: The online version contains supplementary material available at 10.1007/s12665-022-10430-9.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA