Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Revista
País de afiliación
Intervalo de año de publicación
1.
Elife ; 102021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33570495

RESUMEN

3D imaging data necessitate 3D reference atlases for accurate quantitative interpretation. Existing computational methods to generate 3D atlases from 2D-derived atlases result in extensive artifacts, while manual curation approaches are labor-intensive. We present a computational approach for 3D atlas construction that substantially reduces artifacts by identifying anatomical boundaries in the underlying imaging data and using these to guide 3D transformation. Anatomical boundaries also allow extension of atlases to complete edge regions. Applying these methods to the eight developmental stages in the Allen Developing Mouse Brain Atlas (ADMBA) led to more comprehensive and accurate atlases. We generated imaging data from 15 whole mouse brains to validate atlas performance and observed qualitative and quantitative improvement (37% greater alignment between atlas and anatomical boundaries). We provide the pipeline as the MagellanMapper software and the eight 3D reconstructed ADMBA atlases. These resources facilitate whole-organ quantitative analysis between samples and across development.


The research community needs precise, reliable 3D atlases of organs to pinpoint where biological structures and processes are located. For instance, these maps are essential to understand where specific genes are turned on or off, or the spatial organization of various groups of cells over time. For centuries, atlases have been built by thinly 'slicing up' an organ, and then precisely representing each 2D layer. Yet this approach is imperfect: each layer may be accurate on its own, but inevitable mismatches appear between the slices when viewed in 3D or from another angle. Advances in microscopy now allow entire organs to be imaged in 3D. Comparing these images with atlases could help to detect subtle differences that indicate or underlie disease. However, this is only possible if 3D maps are accurate and do not feature mismatches between layers. To create an atlas without such artifacts, one approach consists in starting from scratch and manually redrawing the maps in 3D, a labor-intensive method that discards a large body of well-established atlases. Instead, Young et al. set out to create an automated method which could help to refine existing 'layer-based' atlases, releasing software that anyone can use to improve current maps. The package was created by harnessing eight atlases in the Allen Developing Mouse Brain Atlas, and then using the underlying anatomical images to resolve discrepancies between layers or fill out any missing areas. Known as MagellanMapper, the software was extensively tested to demonstrate the accuracy of the maps it creates, including comparison to whole-brain imaging data from 15 mouse brains. Armed with this new software, researchers can improve the accuracy of their atlases, helping them to understand the structure of organs at the level of the cell and giving them insight into a broad range of human disorders.


Asunto(s)
Encéfalo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Animales , Encéfalo/crecimiento & desarrollo , Femenino , Masculino , Ratones
2.
Elife ; 92020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33155545

RESUMEN

Many genes have been linked to autism. However, it remains unclear what long-term changes in neural circuitry result from disruptions in these genes, and how these circuit changes might contribute to abnormal behaviors. To address these questions, we studied behavior and physiology in mice heterozygous for Pogz, a high confidence autism gene. Pogz+/- mice exhibit reduced anxiety-related avoidance in the elevated plus maze (EPM). Theta-frequency communication between the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC) is known to be necessary for normal avoidance in the EPM. We found deficient theta-frequency synchronization between the vHPC and mPFC in vivo. When we examined vHPC-mPFC communication at higher resolution, vHPC input onto prefrontal GABAergic interneurons was specifically disrupted, whereas input onto pyramidal neurons remained intact. These findings illustrate how the loss of a high confidence autism gene can impair long-range communication by causing inhibitory circuit dysfunction within pathways important for specific behaviors.


Asunto(s)
Ansiedad/genética , Trastorno Autístico/genética , Transposasas/genética , Animales , Ansiedad/fisiopatología , Trastorno Autístico/fisiopatología , Reacción de Prevención , Comunicación , Femenino , Heterocigoto , Hipocampo/fisiopatología , Interneuronas , Masculino , Ratones , Neurociencias , Corteza Prefrontal/fisiopatología , Células Piramidales , Ritmo Teta , Transposasas/metabolismo
3.
Elife ; 92020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32452758

RESUMEN

​Maf (c-Maf) and Mafb transcription factors (TFs) have compensatory roles in repressing somatostatin (SST+) interneuron (IN) production in medial ganglionic eminence (MGE) secondary progenitors in mice. Maf and Mafb conditional deletion (cDKO) decreases the survival of MGE-derived cortical interneurons (CINs) and changes their physiological properties. Herein, we show that (1) Mef2c and Snap25 are positively regulated by Maf and Mafb to drive IN morphological maturation; (2) Maf and Mafb promote Mef2c expression which specifies parvalbumin (PV+) INs; (3) Elmo1, Igfbp4 and Mef2c are candidate markers of immature PV+ hippocampal INs (HIN). Furthermore, Maf/Mafb neonatal cDKOs have decreased CINs and increased HINs, that express Pnoc, an HIN specific marker. Our findings not only elucidate key gene targets of Maf and Mafb that control IN development, but also identify for the first time TFs that differentially regulate CIN vs. HIN production.


Asunto(s)
Regulación de la Expresión Génica , Interneuronas/metabolismo , Factor de Transcripción MafB/fisiología , Proteínas Proto-Oncogénicas c-maf/fisiología , Animales , Femenino , Factores de Transcripción MEF2/metabolismo , Ratones , Enfermedades del Sistema Nervioso/etiología , Embarazo , Precursores de Proteínas/genética , Receptores CXCR4/metabolismo , Receptores Opioides/genética , Análisis de la Célula Individual , Proteína 25 Asociada a Sinaptosomas/metabolismo , Transcriptoma
4.
Elife ; 52016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27458797

RESUMEN

Dravet Syndrome is an intractable form of childhood epilepsy associated with deleterious mutations in SCN1A, the gene encoding neuronal sodium channel Nav1.1. Earlier studies using human induced pluripotent stem cells (iPSCs) have produced mixed results regarding the importance of Nav1.1 in human inhibitory versus excitatory neurons. We studied a Nav1.1 mutation (p.S1328P) identified in a pair of twins with Dravet Syndrome and generated iPSC-derived neurons from these patients. Characterization of the mutant channel revealed a decrease in current amplitude and hypersensitivity to steady-state inactivation. We then differentiated Dravet-Syndrome and control iPSCs into telencephalic excitatory neurons or medial ganglionic eminence (MGE)-like inhibitory neurons. Dravet inhibitory neurons showed deficits in sodium currents and action potential firing, which were rescued by a Nav1.1 transgene, whereas Dravet excitatory neurons were normal. Our study identifies biophysical impairments underlying a deleterious Nav1.1 mutation and supports the hypothesis that Dravet Syndrome arises from defective inhibitory neurons.


Asunto(s)
Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/patología , Mutación , Canal de Sodio Activado por Voltaje NAV1.1/deficiencia , Neuronas/fisiología , Telencéfalo/fisiología , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA