Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 546(7656): 129-132, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569799

RESUMEN

X-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 1020 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecular system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects-an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure-the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 1020 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is considerably enhanced compared to that of an individual heavy atom with the same absorption cross-section. This enhancement is driven by ultrafast charge transfer within the molecule, which refills the core holes that are created in the heavy atom, providing further targets for inner-shell ionization and resulting in the emission of more than 50 electrons during the X-ray pulse. Our results demonstrate that efficient modelling of X-ray-driven processes in complex systems at ultrahigh intensities is feasible.


Asunto(s)
Cristalografía/métodos , Electrones , Rayos Láser , Proteínas/química , Rayos X , Yodo/química , Cinética , Fotones , Conformación Proteica , Electricidad Estática , Factores de Tiempo
2.
Phys Chem Chem Phys ; 24(41): 25426-25433, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36250488

RESUMEN

On the basis of first-principles calculations, we investigate the absorption of fluorine and chlorine on ferromagnetic monolayer CrN focusing on the mechanism of spin reorientation. We use density functional theory in combination with the spin Hamiltonian approach to study the electronic and magnetic properties of monolayer CrN upon single-side adsorption of F and Cl atoms. While the electronic structure of ferromagnetic CrN remains half-metallic after functionalization, its preferred axis of magnetization is rotated toward the in-plane direction due to the orbital moment suppression. The half-coverage of CrN is found to be thermodynamically stable and ferromagnetically ordered at room temperature. Our findings demonstrate the possibility of altering the magnetic properties of a two-dimensional magnet after the adsorption of F and Cl, which opens a route to the detection of these gases using magnetic or optical measurements.

3.
Phys Chem Chem Phys ; 24(44): 27121-27127, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36342321

RESUMEN

During the last decade, X-ray free-electron lasers (XFELs) have enabled the study of light-matter interaction under extreme conditions. Atoms which are subject to XFEL radiation are charged by a complex interplay of (several subsequent) photoionization events and electronic decay processes within a few femtoseconds. The interaction with molecules is even more intriguing, since intricate nuclear dynamics occur as the molecules start to dissociate during the charge-up process. Here, we demonstrate that by analyzing photoelectron angular emission distributions and kinetic energy release of charge states of ionic molecular fragments, we can obtain a detailed understanding of the charge-up and fragmentation dynamics. Our novel approach allows for gathering such information without the need of complex ab initio modeling. As an example, we provide a detailed view on the processes happening on a femtosecond time scale in oxygen molecules exposed to intense XFEL pulses.

4.
Mol Biol (Mosk) ; 56(2): 296-319, 2022.
Artículo en Ruso | MEDLINE | ID: mdl-35403621

RESUMEN

Methyltransferases (MTases) play an important role in the functioning of living systems, catalyzing the methylation reactions of DNA, RNA, proteins, and small molecules, including endogenous compounds and drugs. Many human diseases are associated with disturbances in the functioning of these enzymes; therefore, the study of MTases is an urgent and important task. Most MTases use the cofactor S-adenosyl-L-methionine (SAM) as a methyl group donor. SAM analogs are widely applicable in the study of MTases: they are used in studies of the catalytic activity of these enzymes, in identification of substrates of new MTases, and for modification of the substrates or substrate linking to MTases. In this review, new synthetic analogs of SAM and the problems that can be solved with their usage are discussed.


Asunto(s)
Metiltransferasas , S-Adenosilmetionina , ADN/química , Humanos , Metionina , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
5.
Phys Rev Lett ; 127(9): 093202, 2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34506178

RESUMEN

The interaction of intense femtosecond x-ray pulses with molecules sensitively depends on the interplay between multiple photoabsorptions, Auger decay, charge rearrangement, and nuclear motion. Here, we report on a combined experimental and theoretical study of the ionization and fragmentation of iodomethane (CH_{3}I) by ultraintense (∼10^{19} W/cm^{2}) x-ray pulses at 8.3 keV, demonstrating how these dynamics depend on the x-ray pulse energy and duration. We show that the timing of multiple ionization steps leading to a particular reaction product and, thus, the product's final kinetic energy, is determined by the pulse duration rather than the pulse energy or intensity. While the overall degree of ionization is mainly defined by the pulse energy, our measurement reveals that the yield of the fragments with the highest charge states is enhanced for short pulse durations, in contrast to earlier observations for atoms and small molecules in the soft x-ray domain. We attribute this effect to a decreased charge transfer efficiency at larger internuclear separations, which are reached during longer pulses.

6.
Opt Lett ; 44(5): 1129-1132, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30821788

RESUMEN

Low- and ultralow-energy tightly focused 200 fs, 515 nm donut-shaped laser pulses at 0.25 and 0.65 NA focusing were used for single-shot ablative pulse-energy scalable nanopatterning of 50 nm thick gold film and the following plasmonic excitation of dye monolayer photoluminescence (PL) in the fabricated nanostructures, respectively. The same pulses at much lower, non-ablative nanojoule energies, and the same focusing and linear, azimuthal, or radial polarizations provided efficient spectrally and symmetry-matched excitation of both localized and delocalized surface electromagnetic modes in the separate, ring-like through holes and their arrays in the film envisioned by our modeling, thus resulting in a polarization-sensitive yield of rhodamine 6G dye PL. The demonstrated consistency between the symmetries of the donut-shaped low-energy photo-exciting laser beam, its polarization state, and the donut-shaped gold nanostructures, produced by the same beam at high, ablative pulse energies, paves the way to smart, self-consistent nanofabrication and plasmonic sensing, when the structured light interacts with the consistently structured matter.

7.
Phys Rev Lett ; 123(17): 176401, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31702262

RESUMEN

We show that hole states in recently discovered single-layer InSe are strongly renormalized by the coupling with acoustic phonons. The coupling is enhanced significantly at moderate hole doping (∼10^{13} cm^{-2}) due to hexagonal warping of the Fermi surface. While the system remains dynamically stable, its electron-phonon spectral function exhibits sharp low-energy resonances, leading to the formation of satellite quasiparticle states near the Fermi energy. Such many-body renormalization is predicted to have two important consequences. First, it significantly suppresses charge carrier mobility reaching ∼1 cm^{2} V^{-1} s^{-1} at 100 K in a freestanding sample. Second, it gives rise to unusual temperature-dependent optical excitations in the midinfrared region. Relatively small charge carrier concentrations and realistic temperatures suggest that these excitations may be observed experimentally.

8.
Phys Rev Lett ; 123(2): 023201, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31386513

RESUMEN

We present a comprehensive experimental and theoretical study on superfluorescence in the extreme ultraviolet wavelength regime. Focusing a free-electron laser pulse in a cell filled with Xe gas, the medium is quasi-instantaneously population inverted by 4d-shell ionization on the giant resonance followed by Auger decay. On the timescale of ∼10 ps to ∼100 ps (depending on parameters) a macroscopic polarization builds up in the medium, resulting in superfluorescent emission of several Xe lines in the forward direction. As the number of emitters in the system is increased by either raising the pressure or the pump-pulse energy, the emission yield grows exponentially over four orders of magnitude and reaches saturation. With increasing yield, we observe line broadening, a manifestation of superfluorescence in the spectral domain. Our novel theoretical approach, based on a full quantum treatment of the atomic system and the irradiated field, shows quantitative agreement with the experiment and supports our interpretation.

9.
Phys Chem Chem Phys ; 21(26): 14090-14102, 2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-30688948

RESUMEN

We report the results of a time-resolved coincident ion momentum imaging experiment probing nuclear wave packet dynamics in the strong-field ionization and dissociation of iodomethane (CH3I), a prototypical polyatomic system for photochemistry and ultrafast laser science. By measuring yields, kinetic energies, and angular distributions of CH3+ + I+ and CH3+ + I++ ion pairs as a function of the delay between two 25 fs, 790 nm pump and probe pulses, we map both, bound and dissociating nuclear wave packets in intermediate cationic states, thereby tracking different ionization and dissociation pathways. In both channels, we find oscillatory features with a 130 fs periodicity resulting from vibrational motion (C-I symmetric stretch mode) in the first electronically excited state of CH3I+. This vibrational wave packet dephases within 1 ps, in good agreement with a simple wave packet propagation model. Our results indicate that the first excited cationic state plays a key role in the dissociative ionization of CH3I and that it represents an important intermediate in the sequential double and multiple ionization at moderate intensities.

10.
Phys Rev Lett ; 120(21): 216401, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29883184

RESUMEN

Electron correlation effects are studied in ZrSiS using a combination of first-principles and model approaches. We show that basic electronic properties of ZrSiS can be described within a two-dimensional lattice model of two nested square lattices. A high degree of electron-hole symmetry characteristic for ZrSiS is one of the key features of this model. Having determined model parameters from first-principles calculations, we then explicitly take electron-electron interactions into account and show that, at moderately low temperatures, ZrSiS exhibits excitonic instability, leading to the formation of a pseudogap in the electronic spectrum. The results can be understood in terms of Coulomb-interaction-assisted pairing of electrons and holes reminiscent of that of an excitonic insulator. Our finding allows us to provide a physical interpretation of the unusual mass enhancement of charge carriers in ZrSiS recently observed experimentally.

11.
Phys Rev Lett ; 120(10): 103001, 2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-29570318

RESUMEN

A key question concerning the three-body fragmentation of polyatomic molecules is the distinction of sequential and concerted mechanisms, i.e., the stepwise or simultaneous cleavage of bonds. Using laser-driven fragmentation of OCS into O^{+}+C^{+}+S^{+} and employing coincidence momentum imaging, we demonstrate a novel method that enables the clear separation of sequential and concerted breakup. The separation is accomplished by analyzing the three-body fragmentation in the native frame associated with each step and taking advantage of the rotation of the intermediate molecular fragment, CO^{2+} or CS^{2+}, before its unimolecular dissociation. This native-frame method works for any projectile (electrons, ions, or photons), provides details on each step of the sequential breakup, and enables the retrieval of the relevant spectra for sequential and concerted breakup separately. Specifically, this allows the determination of the branching ratio of all these processes in OCS^{3+} breakup. Moreover, we find that the first step of sequential breakup is tightly aligned along the laser polarization and identify the likely electronic states of the intermediate dication that undergo unimolecular dissociation in the second step. Finally, the separated concerted breakup spectra show clearly that the central carbon atom is preferentially ejected perpendicular to the laser field.

12.
Nature ; 486(7404): 513-7, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22739316

RESUMEN

The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.


Asunto(s)
Aerosoles/análisis , Aerosoles/química , Fractales , Espectrometría de Masas , Movimiento (Física) , Hollín/análisis , Hollín/química , Aminoácidos/química , Electrones , Rayos Láser , Nanopartículas , Tamaño de la Partícula , Proteínas/química , Solventes/química , Vibración , Difracción de Rayos X
13.
Phys Rev Lett ; 116(24): 246401, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27367397

RESUMEN

We present a theory for single- and two-phonon charge carrier scattering in anisotropic two-dimensional semiconductors applied to single-layer black phosphorus (BP). We show that in contrast to graphene, where two-phonon processes due to the scattering by flexural phonons dominate at any practically relevant temperatures and are independent of the carrier concentration n, two-phonon scattering in BP is less important and can be considered negligible at n≳10^{13} cm^{-2}. At smaller n, however, phonons enter in the essentially anharmonic regime. Compared to the hole mobility, which does not exhibit strong anisotropy between the principal directions of BP (µ_{xx}/µ_{yy}∼1.4 at n=10^{13} cm^{-2} and T=300 K), the electron mobility is found to be significantly more anisotropic (µ_{xx}/µ_{yy}∼6.2). Absolute values of µ_{xx} do not exceed 250 (700) cm^{2} V^{-1} s^{-1} for holes (electrons), which can be considered as an upper limit for the mobility in BP at room temperature.

14.
Phys Rev Lett ; 116(25): 256804, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27391741

RESUMEN

To date germanene has only been synthesized on metallic substrates. A metallic substrate is usually detrimental for the two-dimensional Dirac nature of germanene because the important electronic states near the Fermi level of germanene can hybridize with the electronic states of the metallic substrate. Here we report the successful synthesis of germanene on molybdenum disulfide (MoS_{2}), a band gap material. Preexisting defects in the MoS_{2} surface act as preferential nucleation sites for the germanene islands. The lattice constant of the germanene layer (3.8±0.2 Å) is about 20% larger than the lattice constant of the MoS_{2} substrate (3.16 Å). Scanning tunneling spectroscopy measurements and density functional theory calculations reveal that there are, besides the linearly dispersing bands at the K points, two parabolic bands that cross the Fermi level at the Γ point.

15.
Phys Rev Lett ; 117(5): 059902, 2016 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-27517796

RESUMEN

This corrects the article DOI: 10.1103/PhysRevLett.116.256804.

16.
Faraday Discuss ; 194: 537-562, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27797386

RESUMEN

We studied the electronic and nuclear dynamics of I-containing organic molecules induced by intense hard X-ray pulses at the XFEL facility SACLA in Japan. The interaction with the intense XFEL pulse causes absorption of multiple X-ray photons by the iodine atom, which results in the creation of many electronic vacancies (positive charges) via the sequential electronic relaxation in the iodine, followed by intramolecular charge redistribution. In a previous study we investigated the subsequent fragmentation by Coulomb explosion of the simplest I-substituted hydrocarbon, iodomethane (CH3I). We carried out three-dimensional momentum correlation measurements of the atomic ions created via Coulomb explosion of the molecule and found that a classical Coulomb explosion model including charge evolution (CCE-CE model), which accounts for the concerted dynamics of nuclear motion and charge creation/charge redistribution, reproduces well the observed momentum correlation maps of fragment ions emitted after XFEL irradiation. Then we extended the study to 5-iodouracil (C4H3IN2O2, 5-IU), which is a more complex molecule of biological relevance, and confirmed that, in both CH3I and 5-IU, the charge build-up takes about 10 fs, while the charge is redistributed among atoms within only a few fs. We also adopted a self-consistent charge density-functional based tight-binding (SCC-DFTB) method to treat the fragmentations of highly charged 5-IU ions created by XFEL pulses. Our SCC-DFTB modeling reproduces well the experimental and CCE-CE results. We have also investigated the influence of the nuclear dynamics on the charge redistribution (charge transfer) using nonadiabatic quantum-mechanical molecular dynamics (NAQMD) simulation. The time scale of the charge transfer from the iodine atomic site to the uracil ring induced by nuclear motion turned out to be only ∼5 fs, indicating that, besides the molecular Auger decay in which molecular orbitals delocalized over the iodine site and the uracil ring are involved, the nuclear dynamics also play a role for ultrafast charge redistribution. The present study illustrates that the CCE-CE model as well as the SCC-DFTB method can be used for reconstructing the positions of atoms in motion, in combination with the momentum correlation measurement of the atomic ions created via XFEL-induced Coulomb explosion of molecules.

17.
Opt Lett ; 40(8): 1687-90, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25872048

RESUMEN

In this work, we demonstrate an all-laser method of fabrication of optical nanoantennas (ONAs) with an additional coupling/focusing diffractive element. This method is based on double-shot femtosecond laser nanoablation of a thin supported metallic film, inducing a sequence of electrodynamic (surface plasmon-polariton [SPP] excitation and interference), thermal (melting, ablation and ultrafast cooling), and hydrodynamic processes. In particular, the thermal and hydrodynamic processes are important for ONA formation after the first laser shot, while second spatially shifted laser shot via an induced SPP wave results in a radial surface grating near the nanoantenna. Such gratings provide efficient coupling between incident laser radiation and SPP waves, thus significantly improving the ONA efficiency.

18.
Phys Chem Chem Phys ; 17(23): 15209-17, 2015 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-25990621

RESUMEN

We perform a systematic first-principles study of phosphorene in the presence of typical monovalent (hydrogen and fluorine) and divalent (oxygen) impurities. The results of our modeling suggest a decomposition of phosphorene into weakly bonded one-dimensional (1D) chains upon single- and double-side hydrogenation and fluorination. In spite of a sizable quasiparticle band gap (2.29 eV), fully hydrogenated phosphorene was found to be dynamically unstable. In contrast, complete fluorination of phosphorene gives rise to a stable structure, which is an indirect gap semiconductor with a band gap of 2.27 eV. We also show that fluorination of phosphorene from the gas phase is significantly more likely than hydrogenation due to the relatively low energy barrier for the dissociative adsorption of F2 (0.19 eV) compared to H2 (2.54 eV). At low concentrations, monovalent impurities tend to form regular atomic rows of phosphorene, though such patterns do not seem to be easily achievable due to high migration barriers (1.09 and 2.81 eV for H2 and F2, respectively). Oxidation of phosphorene is shown to be a qualitatively different process. Particularly, we observe instability of phosphorene upon oxidation, leading to the formation of disordered amorphous-like structures at high concentrations of impurities.

19.
Phys Rev Lett ; 113(7): 073001, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25170702

RESUMEN

The charge rearrangement in dissociating I_{2}^{n+} molecules is measured as a function of the internuclear distance R using extreme ultraviolet pulses delivered by the free-electron laser in Hamburg. Within an extreme ultraviolet pump-probe scheme, the first pulse initiates dissociation by multiply ionizing I_{2}, and the delayed probe pulse further ionizes one of the two fragments at a given time, thus triggering charge rearrangement at a well-defined R. The electron transfer between the fragments is monitored by analyzing the delay-dependent ion kinetic energies and charge states. The experimental results are in very good agreement with predictions of the classical over-the-barrier model demonstrating its validity in a thus far unexplored quasimolecular regime relevant for free-electron laser, plasma, and chemistry applications.

20.
Kardiologiia ; 54(1): 92-4, 2014.
Artículo en Ruso | MEDLINE | ID: mdl-24881318

RESUMEN

The treatment of malignant tumors may cause severe adverse reactions including cardiovascular problems. The case of a young woman with trastuzumab (Herceptin) induced dilatation cardiomyopathy with favorable outcome is presented in the article.


Asunto(s)
Anticuerpos Monoclonales Humanizados/efectos adversos , Antineoplásicos/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Cardiomiopatía Dilatada/etiología , Adulto , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/uso terapéutico , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/tratamiento farmacológico , Femenino , Humanos , Trastuzumab
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA