Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 485: 116904, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503349

RESUMEN

Manganese (Mn)-induced pulmonary toxicity and the underlying molecular mechanisms remain largely enigmatic. Further, in recent years, microRNAs (miRNAs) have emerged as regulators of several pollutants-mediated toxicity. In this context, our study aimed at elucidating whether miRNAs are involved in manganese (II) chloride (MnCl2) (Mn2+)-induced cytotoxicity in lung epithelial cells. Growth inhibition of Mn2+ towards normal human bronchial epithelial (BEAS-2B) and adenocarcinomic human alveolar basal epithelial (A549) cells was analyzed by MTT assay following 24 or 48 h treatment. Reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm), cell cycle arrest, and apoptosis were evaluated by flow cytometry. RT-qPCR and Western blot were performed to analyze the expression of cyclins, anti-oxidant genes, and miRNAs. We used small RNA sequencing to investigate Mn2+-induced changes in miRNA expression patterns. In both cell lines, Mn2+ treatment inhibited growth in a dose-dependent manner. Further, compared with vehicle-treated cells, Mn2+ (250 µM) treatment induced ROS generation, cell cycle arrest, apoptosis, and decreased ΔΨm as well as altered the expression of cyclins and anti-oxidant genes. Sequencing data revealed that totally 296 miRNAs were differentially expressed in Mn2+-treated cells. Among them, miR-221-3p was one of the topmost down-regulated miRNAs in Mn2+-treated cells. We further confirmed this association in A549 cells. In addition, transient transfection was performed to study gain-of-function experiments. Forced expression of miR-221-3p significantly improved cell viability and reduced Mn2+-induced cell cycle arrest and apoptosis in BEAS-2B cells. In conclusion, miR-221-3p may be the most likely target that accounts for the cytotoxicity of Mn2+-exposed lung epithelial cells.


Asunto(s)
Apoptosis , Células Epiteliales , Pulmón , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Células A549 , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Apoptosis/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Compuestos de Manganeso , Manganeso/toxicidad , Línea Celular , Cloruros/toxicidad , Puntos de Control del Ciclo Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga
2.
J Appl Toxicol ; 42(1): 103-129, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34237170

RESUMEN

Manganese (Mn) is an essential trace element for humans, but long-term environmental or occupational exposures can lead to numerous health problems. Although many studies have identified an association between Mn exposures and neurological abnormalities, emerging data suggest that occupationally and environmentally relevant levels of Mn may also be linked to multiple organ dysfunction in the general population. In this regard, many experimental and clinical studies provide support for a causal link between Mn exposure and structural and functional changes that are responsible for organ dysfunction in major organs like lung, liver, and kidney. The underlying mechanisms suggested to Mn toxicity include altered activities of the components of intracellular signaling cascades, oxidative stress, apoptosis, affected cell cycle regulation, autophagy, angiogenesis, and an inflammatory response. We further discussed the sources and possible mechanisms of Mn absorption and distribution in different organs. Finally, treatment strategies available for treating Mn toxicity as well as directions for future studies were discussed.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Pulmón/efectos de los fármacos , Manganeso/toxicidad , Animales , Humanos , Riñón/fisiopatología , Hígado/fisiopatología , Pulmón/fisiopatología , Exposición Profesional/efectos adversos
3.
Indian J Microbiol ; 58(2): 193-200, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29651178

RESUMEN

Carbamazepine (CBZ) is an anti-epileptic and anti-convulsant drug widely used for the treatment of epilepsy and other bipolar disorders. Ozone as an advanced oxidation process has been widely used for the degradation of CBZ resulting in the formation of transformation products (ozonides). The present research aims to isolate and identify potential microorganism, capable of degradation of CBZ and its transformation products. The cell viability and cytotoxicity of pure CBZ and their ozone transformation products were evaluated using the cells of Pseudomonas sp. strain KSH-1 through cell viability assay tests. The cells metabolic activity was assessed at varying CBZ concentrations (~ 10-25 ppm, pure CBZ) and cumulatively for ozone transformation products. For pure CBZ, % cell viability decreases as CBZ concentration increases, while, in case of post-ozonated CBZ transformation products, the viability decreases initially and then increases upon exposure of ozone with a maximum cell viability of 97 ± 2.8% evaluated for 2 h post-ozonated samples.

4.
World J Microbiol Biotechnol ; 33(6): 121, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28523623

RESUMEN

The engineered-Soil Aquifer Treatment (e-SAT) system was exploited for the biological degradation of Sulfamethoxazole (SMX) which is known to bio-accumulate in the environment. The fate of SMX in soil column was studied through laboratory simulation for a period of 90 days. About 20 ppm SMX concentration could be removed in four consecutive cycles in e-SAT. To understand the microbial community change and biological degradation of SMX in e-SAT system, metagenomic analysis was performed for the soil samples before (A-EBD) and after SMX exposure (B-EBD) in the e-SAT. Four bacterial phyla were found to be present in both the samples, with sample B-EBD showing increased abundance for Actinobacteria, Bacteroidetes, Firmicutes and decreased Proteobacterial abundance compared to A-EBD. The unclassified bacteria were found to be abundant in B-EBD compared to A-EBD. At class level, classes such as Bacilli, Negativicutes, Deltaproteobacteria, and Bacteroidia emerged in sample B-EBD owing to SMX treatment, while Burkholderiales and Nitrosomonadales appeared to be dominant at order level after SMX treatment. Furthermore, in response to SMX treatment, the family Nitrosomonadaceae appeared to be dominant. Pseudomonas was the most dominating bacterial genus in A-EBD whereas Cupriavidus dominated in sample B-EBD. Additionally, the sulfur oxidizing bacteria were enriched in the B-EBD sample, signifying efficient electron transfer and hence organic molecule degradation in the e-SAT system. Results of this study offer new insights into understanding of microbial community shift during the biodegradation of SMX.


Asunto(s)
Bacterias/clasificación , Bacterias/metabolismo , Biodegradación Ambiental , Agua Subterránea/microbiología , Microbiología del Suelo , Sulfametoxazol/metabolismo , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Biodiversidad , ADN Bacteriano/genética , ADN Ribosómico , India , Metagenoma/genética , Consorcios Microbianos/genética , Filogenia , Análisis de Secuencia , Suelo/química , Aguas Residuales/microbiología
5.
Environ Sci Pollut Res Int ; 29(4): 5256-5268, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34417692

RESUMEN

Landfill soil leachates, containing myriad of xenobiotics, increase genotoxic and cytotoxic stress-induced cell death. However, the underlying mechanism involved in the elimination of the damaged cells is yet to be fully elucidated. This study investigated the apoptotic processes induced in lymphoma (Jurkat) cells by landfill soil leachates from Olusosun (OSL, Nigeria) and Nagpur (NPL, India). Jurkat was incubated with sub-lethal concentrations of OSL and NPL for 24 h and analyzed for DNA fragmentation and apoptosis using agarose gel electrophoresis and Hoechst 33258-PI staining, respectively. Complementary DNA expression profiling of some pro-apoptotic and anti-apoptotic genes regulating apoptosis was also analyzed using real-time PCR (RT-PCR) method. Agarose gel electrophoresis revealed DNA fragmentations in OSL and NPL-treated cells. Hoecsht-33258 - Propidium Iodide (PI) based apoptotic analysis confirmed apoptotic cell death in exposed Jurkat. RT-PCR analysis revealed different fold changes in the pro- and anti-apoptotic genes in OSL and NPL-treated Jurkat. There was significant increase in fold change of the up-regulated genes; apoptosis inducing factor mitochondrion-associated 2 (AIFM2), Fas-associated death domain (FADD), Caspase-2, Caspase-6, BH3 interacting domain death agonist (BID), tumor suppressor (p53), and BCL2 associated agonist of cell death (BAD) and down-regulation of apoptosis inhibitor 5 (API5). Results suggest that OSL and NPL elicited genotoxic stress-related apoptosis in Jurkat. The dysregulation in the expression of genes involved in apoptotic processes in wildlife and human exposed to landfill emissions may increase aetiology of various pathological diseases including cancer.


Asunto(s)
Caspasas , Contaminantes Químicos del Agua , Apoptosis , Daño del ADN , Humanos , Células Jurkat , Nigeria , Suelo , Instalaciones de Eliminación de Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA