Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Transfusion ; 63(10): 1937-1950, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37615493

RESUMEN

BACKGROUND: Pathogen reduction of platelet concentrates (PCs) using amotosalen and broad-spectrum UVA illumination contributes to the safety of platelet transfusion by reducing the risk of transfusion-transmitted infections. We evaluated the in vitro quality of stored buffy-coat (BC) PCs treated with amotosalen and a prototype light-emitting diode (LED) illuminator. METHODS: Double-dose BC-PCs collected into PAS-III/plasma or SSP+ /plasma (55/45%) were treated with amotosalen in combination with either conventional UVA lamps (INT100 Illuminator 320-400 nm) or LED illuminators at 350 nm. Platelet quality and function were evaluated over 7 days. RESULTS: Platelet counts were conserved during storage in all groups, as was platelet swirling without appearance of macroscopic aggregates. Integrin αIIbß3 and glycoprotein (GP) VI expression remained stable, whereas GPIbα and GPV declined similarly in all groups. UV lamp- and LED-treated PCs displayed similar glucose consumption, lactate generation, and pH variation. Comparable spontaneous and residual P-selectin and phosphatidylserine exposure, activated αIIbß3 exposure, mitochondrial membrane potential, lactate dehydrogenase release, and adhesive properties under flow conditions were observed during storage. The use of SSP+ /plasma compared with PAS-III/plasma better preserved most of these parameters, especially during late storage, irrespective of the type of illuminator. CONCLUSION: Replacing the UVA lamp for photochemical treatment by LED illuminators had no impact on platelet metabolism, spontaneous activation, apoptosis or viability, or on the in vitro function of BC-PCs stored for 7 days in SSP+ or PAS-III/plasma. These findings support improved procedures for the pathogen reduction and storage of PCs, to ensure transfusion safety and retention of platelet functional properties.


Asunto(s)
Furocumarinas , Rayos Ultravioleta , Humanos , Furocumarinas/farmacología , Plaquetas/metabolismo , Transfusión de Plaquetas , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Conservación de la Sangre/métodos
2.
Transfusion ; 61(3): 919-930, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33527430

RESUMEN

BACKGROUND: Deterioration in quality of platelet concentrates (PCs) during storage results from the appearance of storage lesions affecting the hemostatic functions and posttransfusion survival of platelets. These lesions depend on the preparation and pathogen inactivation methods used, duration of storage, and platelet additive solutions (PASs) present in storage bags. METHODS: We investigated the effects of citrate contained in third-generation PAS (PAS-III) on storage lesions in buffy-coat PCs with or without photochemical (amotosalen-ultraviolet A) treatment over 7 days. RESULTS: Platelet counts were conserved in all groups during storage, as was platelet swirling without appearance of macroscopic aggregates. Glycoprotein (GP) IIbIIIa and GPVI expression remained stable, whereas GPIbα declined similarly in all groups during storage. Removal of citrate from PAS-III, resulting in global reduction of citrate from 11 to 5 mM, led to a significant decrease in glucose consumption, which largely countered a modest deleterious effect of photochemical treatment. Citrate reduction also resulted in decreased lactate generation and better maintenance of pH during storage, while photochemical treatment had no impact on these parameters. Moreover, citrate-free storage significantly reduced exposure of P-selectin and the apoptosis signal phosphatidylserine, thereby abolishing the activating effect of photochemical treatment on both parameters. Citrate reduction benefited platelet aggregation to various agonists up to Day 7, whereas PCT had no impact on these responses. CONCLUSION: Removal of citrate from PAS-III has a beneficial impact on platelet metabolism, spontaneous activation, and apoptosis, and improves platelet aggregation, irrespective of photochemical treatment, which should allow transfusion of platelets with better and longer-lasting functional properties.


Asunto(s)
Plaquetas/metabolismo , Conservación de la Sangre/métodos , Ácido Cítrico/farmacología , Agregación Plaquetaria/efectos de los fármacos , Apoptosis/efectos de los fármacos , Furocumarinas/farmacología , Hemostasis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Selectina-P/metabolismo , Fosfatidilserinas , Recuento de Plaquetas , Pruebas de Función Plaquetaria , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo
3.
Transfusion ; 61(5): 1642-1653, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33580977

RESUMEN

BACKGROUND: The production of platelet concentrates (PCs) is evolving, and their survival capacity needs in vivo evaluation. This requires that the transfused platelets (PLTs) be distinguished from those of the recipient. Labeling at various biotin (Bio) densities allows one to concurrently trace multiple PLT populations, as reported for red blood cells. STUDY DESIGN AND METHODS: A method is described to label human PLTs at two densities of Bio for future clinical trials. Injectable-grade PLTs were prepared in a sterile environment, using injectable-grade buffers and good manufacturing practices (GMP)-grade Sulfo-NHS-Biotin. Sulfo-NHS-Biotin concentrations were chosen to maintain PLT integrity and avoid potential alloimmunization while enabling the detection of circulating BioPLTs. The impact of biotinylation on human PLT recirculation was evaluated in vivo in a severe immunodeficient mouse model using ex vivo flow cytometry. RESULTS: BioPLTs labeled with 1.2 or 10 µg/ml Sulfo-NHS-Biotin displayed normal ultrastructure and retained aggregation and secretion capacity and normal expression of the main surface glycoproteins. The procedure avoided detrimental PLT activation or apoptosis signals. Transfused human BioPLT populations could be distinguished from one another and from unlabeled circulating mouse PLTs, and their survival was comparable to that of unlabeled human PLTs in the mouse model. CONCLUSIONS: Provided low Sulfo-NHS-Biotin concentrations (<10 µg/ml) are used, injectable-grade BioPLTs comply with safety regulations, conserve PLT integrity, and permit accurate in vivo detection. This alternative to radioisotopes, which allows one to follow different PLT populations in the same recipient, should be valuable when assessing new PC preparations and monitoring PLT survival in clinical research.


Asunto(s)
Biotina/análogos & derivados , Plaquetas/citología , Rastreo Celular , Succinimidas/análisis , Animales , Biotina/análisis , Biotinilación , Plaquetas/química , Plaquetas/ultraestructura , Supervivencia Celular , Femenino , Humanos , Ratones , Recuento de Plaquetas , Transfusión de Plaquetas , Coloración y Etiquetado
4.
J Proteome Res ; 19(8): 3438-3451, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32609523

RESUMEN

Muscle atrophy is a deleterious consequence of physical inactivity and is associated with increased morbidity and mortality. The aim of this study was to decipher the mechanisms involved in disuse muscle atrophy in eight healthy men using a 21 day bed rest with a cross-over design (control, with resistive vibration exercise (RVE), or RVE combined with whey protein supplementation and an alkaline salt (NEX)). The main physiological findings show a significant reduction in whole-body fat-free mass (CON -4.1%, RVE -4.3%, NEX -2.7%, p < 0.05), maximal oxygen consumption (CON -20.5%, RVE -6.46%, NEX -7.9%, p < 0.05), and maximal voluntary contraction (CON -15%, RVE -12%, and NEX -9.5%, p < 0.05) and a reduction in mitochondrial enzyme activity (CON -30.7%, RVE -31.3%, NEX -17%, p < 0.05). The benefits of nutrition and exercise countermeasure were evident with an increase in leg lean mass (CON -1.7%, RVE +8.9%, NEX +15%, p < 0.05). Changes to the vastus lateralis muscle proteome were characterized using mass spectrometry-based label-free quantitative proteomics, the findings of which suggest alterations to cell metabolism, mitochondrial metabolism, protein synthesis, and degradation pathways during bed rest. The observed changes were partially mitigated during RVE, but there were no significant pathway changes during the NEX trial. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD006882. In conclusion, resistive vibration exercise, when combined with whey/alkalizing salt supplementation, could be an effective strategy to prevent skeletal muscle protein changes, muscle atrophy, and insulin sensitivity during medium duration bed rest.


Asunto(s)
Reposo en Cama , Vibración , Reposo en Cama/efectos adversos , Estudios Cruzados , Suplementos Dietéticos , Humanos , Masculino , Músculo Esquelético , Proteoma , Suero Lácteo , Proteína de Suero de Leche
5.
Diabetologia ; 60(8): 1491-1501, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28500394

RESUMEN

AIMS/HYPOTHESIS: Physical inactivity has broad implications for human disease including insulin resistance, sarcopenia and obesity. The present study tested the hypothesis that (1) impaired mitochondrial respiration is linked with blunted insulin sensitivity and loss of muscle mass in healthy young men, and (2) resistive vibration exercise (RVE) would mitigate the negative metabolic effects of bed rest. METHODS: Participants (n = 9) were maintained in energy balance during 21 days of bed rest with RVE and without (CON) in a crossover study. Mitochondrial respiration was determined by high-resolution respirometry in permeabilised fibre bundles from biopsies of the vastus lateralis. A hyperinsulinaemic-euglycaemic clamp was used to determine insulin sensitivity, and body composition was assessed by dual-energy x-ray absorptiometry (DEXA). RESULTS: Body mass (-3.2 ± 0.5 kg vs -2.8 ± 0.4 kg for CON and RVE, respectively, p < 0.05), fat-free mass (-2.9 ± 0.5 kg vs -2.7 ± 0.5 kg, p < 0.05) and peak oxygen consumption ([Formula: see text]) (10-15%, p < 0.05) were all reduced following bed rest. Bed rest decreased insulin sensitivity in the CON group (0.04 ± 0.002 mg kgFFM-1 [pmol l-1] min-1 vs 0.03 ± 0.002 mg kgFFM-1 [pmol l-1] min-1 for baseline vs post-CON), while RVE mitigated this response (0.04 ± 0.003 mg kgFFM-1 [pmol l-1] min-1). Mitochondrial respiration (oxidative phosphorylation and electron transport system capacity) decreased in the CON group but not in the RVE group when expressed relative to tissue weight but not when normalised for citrate synthase activity. LEAK respiration, indicating a decrease in mitochondrial uncoupling, was the only component to remain significantly lower in the CON group after normalisation for citrate synthase. This was accompanied by a significant decrease in adenine nucleotide translocase protein content. CONCLUSIONS/INTERPRETATION: Reductions in muscle mitochondrial respiration occur concomitantly with insulin resistance and loss of muscle mass during bed rest and may play a role in the adaptations to physical inactivity. Significantly, we show that RVE is an effective strategy to partially prevent some of the deleterious metabolic effects of bed rest.


Asunto(s)
Reposo en Cama , Resistencia a la Insulina/fisiología , Mitocondrias/metabolismo , Músculo Esquelético/fisiología , Absorciometría de Fotón , Adulto , Composición Corporal/fisiología , Estudios Cruzados , Metabolismo Energético/fisiología , Técnica de Clampeo de la Glucosa , Humanos , Masculino
6.
Liver Int ; 35(6): 1700-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25413107

RESUMEN

BACKGROUND & AIMS: Physical inactivity leads to a cluster of metabolic disorders that have been associated with non-alcoholic fatty liver diseases. We tested whether physical inactivity increases hepatic biomarkers of NAFLDs. METHODS: Sixteen normal-weight healthy women (body mass index = 21.2 ± 0.5 kg/m(2) ) were studied under controlled energy balance conditions during a previous 60-day bed rest with (n = 8) or without (n = 8) a combined aerobic/resistive exercise protocol. Stored samples were retrospectively used to measure plasma hepatic markers, i.e. steatosis-related alanine and aspartate transaminases, cytokeratin 18 and angiopoietin-like 3, at baseline, after 30 and 60 days of bed rest. Fasting insulin and triglycerides were measured at baseline and after 30 days of bed rest. Two indexes were calculated, one combining alanine and aspartate transaminase and cytokeratin 18 and another cytokeratin 18, homeostasis model assessment of insulin resistance and aspartate aminotransferase. RESULTS: Sixty days of bed rest increased all hepatic markers (P < 0.05 for all) and the two indexes (P < 0.01 for both). Exercise significantly reduced the elevation in aspartate transaminase, cytokeratin 18 and both indexes (P < 0.02 for all) but not the increase in alanine transaminase and angiopoietin-like 3. Changes between baseline and 30 days of bed rest in triglycerides were positively associated with changes in aspartate transaminase (R(2) = 0.28, P = 0.04) suggesting a role of hypertriglyceridaemia in the alteration of liver metabolism under inactive conditions. CONCLUSION: Physical inactivity increases, independent of fat mass, hepatic markers of steatosis and steatohepatitis. Regular exercise can limit these physical inactivity-induced metabolic alterations. Future studies need to elucidate the underlying mechanisms.


Asunto(s)
Reposo en Cama , Biomarcadores/sangre , Composición Corporal , Metabolismo Energético/fisiología , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/sangre , Adulto , Alanina Transaminasa/sangre , Proteína 3 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Angiopoyetinas/sangre , Aspartato Aminotransferasas/sangre , Índice de Masa Corporal , Femenino , Voluntarios Sanos , Humanos , Insulina/sangre , Resistencia a la Insulina , Queratina-18/sangre , Estudios Retrospectivos , Triglicéridos/sangre
7.
FASEB J ; 25(10): 3646-60, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21715682

RESUMEN

Long-term spaceflight induces hypokinesia and hypodynamia, which, along microgravity per se, result in a number of significant physiological alterations, such as muscle atrophy, force reduction, insulin resistance, substrate use shift from fats to carbohydrates, and bone loss. Each of these adaptations could turn to serious health deterioration during the long-term spaceflight needed for planetary exploration. We hypothesized that resveratrol (RES), a natural polyphenol, could be used as a nutritional countermeasure to prevent muscle metabolic and bone adaptations to 15 d of rat hindlimb unloading. RES treatment maintained a net protein balance, soleus muscle mass, and soleus muscle maximal force contraction. RES also fully maintained soleus mitochondrial capacity to oxidize palmitoyl-carnitine and reversed the decrease of the glutathione vs. glutathione disulfide ratio, a biomarker of oxidative stress. At the molecular level, the protein content of Sirt-1 and COXIV in soleus muscle was also preserved. RES further protected whole-body insulin sensitivity and lipid trafficking and oxidation, and this was likely associated with the maintained expression of FAT/CD36, CPT-1, and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in muscle. Finally, chronic RES supplementation maintained the bone mineral density and strength of the femur. For the first time, we report a simple countermeasure that prevents the deleterious adaptations of the major physiological functions affected by mechanical unloading. RES could thus be envisaged as a nutritional countermeasure for spaceflight but remains to be tested in humans.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Suspensión Trasera , Condicionamiento Físico Animal , Estilbenos/farmacología , Tejido Adiposo/metabolismo , Animales , Disponibilidad Biológica , Biomarcadores/sangre , Regulación de la Temperatura Corporal/efectos de los fármacos , Densidad Ósea/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Inflamación/metabolismo , Resistencia a la Insulina , Masculino , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/tratamiento farmacológico , Ratas , Ratas Wistar , Resveratrol , Estilbenos/metabolismo , Estilbenos/farmacocinética , Estilbenos/orina
8.
J Clin Endocrinol Metab ; 103(5): 1910-1920, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29546280

RESUMEN

Context: The effects of energy-balanced bed rest on metabolic flexibility have not been thoroughly examined. Objective: We investigated the effects of 21 days of bed rest, with and without whey protein supplementation, on metabolic flexibility while maintaining energy balance. We hypothesized that protein supplementation mitigates metabolic inflexibility by preventing muscle atrophy. Design and Setting: Randomized crossover longitudinal study conducted at the German Aerospace Center, Cologne, Germany. Participants and Interventions: Ten healthy men were randomly assigned to dietary countermeasure or isocaloric control diet during a 21-day bed rest. Outcome Measures: Before and at the end of the bed rest, metabolic flexibility was assessed during a meal test. Secondary outcomes were glucose tolerance by oral glucose tolerance test, body composition by dual energy X-ray absorptiometry, ectopic fat storage by magnetic resonance imaging, and inflammation and oxidative stress markers. Results: Bed rest decreased the ability to switch from fat to carbohydrate oxidation when transitioning from fasted to fed states (i.e., metabolic inflexibility), antioxidant capacity, fat-free mass (FFM), and muscle insulin sensitivity along with greater fat deposition in muscle (P < 0.05 for all). Changes in fasting insulin and inflammation were not observed. However, glucose tolerance was reduced during acute overfeeding. Protein supplementation did not prevent FFM loss and metabolic alterations. Conclusions: Physical inactivity triggers metabolic inflexibility, even when energy balance is maintained. Although reduced insulin sensitivity and increased fat deposition were observed at the muscle level, systemic glucose intolerance was detected only in response to a moderately high-fat meal. This finding supports the role of physical inactivity in metabolic inflexibility and suggests that metabolic inflexibility precedes systemic glucose intolerance.


Asunto(s)
Tejido Adiposo/metabolismo , Reposo en Cama/efectos adversos , Biomarcadores/metabolismo , Metabolismo Energético/fisiología , Intolerancia a la Glucosa/diagnóstico , Intolerancia a la Glucosa/etiología , Resistencia a la Insulina/fisiología , Adiposidad/fisiología , Adulto , Biomarcadores/sangre , Composición Corporal/fisiología , Estudios Cruzados , Dieta , Diagnóstico Precoz , Intolerancia a la Glucosa/metabolismo , Humanos , Estudios Longitudinales , Masculino , Factores de Tiempo
9.
Appl Physiol Nutr Metab ; 38(6): 689-93, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23724888

RESUMEN

We tested whether physical inactivity (PI) is an independent predictor of plasma visfatin, a newly discovered adipokine likely involved in the relationship between obesity-associated low-grade inflammation and insulin resistance. PI was induced in healthy men (Body Mass Index = 23.4 ± 0.6 kg·m(-2)) by 10 days of confinement (n = 8), 1 month of detraining (n = 10), and 3 months of bed rest with (n = 7) and without exercise (n = 8). Visfatin was negatively associated with activity energy expenditure (p = 0.03). No relationship was observed with insulin sensitivity. This suggested that PI itself increases visfatin concentrations.


Asunto(s)
Índice de Masa Corporal , Nicotinamida Fosforribosiltransferasa , Ejercicio Físico , Humanos , Resistencia a la Insulina , Masculino , Obesidad/sangre
10.
Obesity (Silver Spring) ; 20(3): 683-8, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21566564

RESUMEN

The apprehension of the factors that affect long term regulation of energy balance is indispensable to understand the rise in obesity prevalence as well as to delineate levers to prevent it. Accurate measurements of energy balance are however challenging during free-living conditions. Recent studies proposed urinary C-peptide, a metabolic byproduct of insulin synthesis, as reliable noninvasive assessment of energy balance. These studies were in fact essentially based on correlations between urinary C-peptide and energy intake and only focused on nonhuman primates. During a bed-rest study conducted in 16 healthy women in a controlled environment, we tested the existence of a relationship between 24 h-urinary C-peptide and energy balance in humans. Daily energy intake and body mass, body composition (dual-energy X-ray absorptiometry (DXA)) and total energy expenditure (doubly labeled water (DLW) method) was measured and energy balance was calculated as the difference between energy intake and expenditure. Urinary C-peptide was positively correlated with bed-rest-induced changes in fat mass (r(2) = 0.285; P = 0.03) and energy balance assessed at the end of the bed-rest (r(2) = 0.302; P = 0.027). However, in this tightly controlled environment, urinary C-peptide only accounted for 30% of variations in energy balance. No relationship was noted between urinary C-peptide and body or fat mass both at baseline and at the end of the bed-rest. These results indicate that urinary C-peptide cannot be used as an accurate biomarker of energy balance in the general human population in free-living conditions.


Asunto(s)
Reposo en Cama , Péptido C/orina , Ingestión de Energía , Metabolismo Energético , Ejercicio Físico , Absorciometría de Fotón , Adulto , Análisis de Varianza , Biomarcadores/orina , Ingestión de Energía/fisiología , Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Femenino , Humanos , Reproducibilidad de los Resultados , Factores de Tiempo
11.
J Appl Physiol (1985) ; 111(4): 1201-10, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21836047

RESUMEN

Although it is no longer debatable that sedentary behaviors are an actual cause of many metabolic diseases, the physiology of physical inactivity has been poorly investigated for this purpose. Along with microgravity, the physiological adaptations to spaceflights require metabolic adaptations to physical inactivity, and that is exceedingly well-simulated during the ground-based microgravity bed-rest analogs. Bed rest thus represents a unique model to investigate the mechanisms by which physical inactivity leads to the development of current societal chronic diseases. For decades, however, clinicians and physiologists working in space research have worked separately without taking full awareness of potential strong mutual questioning. This review summarizes the data collected over the last 60 years on metabolic adaptations to bed rest in healthy subjects. Our aim is to provide evidence that supports the hypothesis that physical inactivity per se is one of the primary causes in the development of metabolic inflexibility. This evidence will focus on four main tenants of metabolic inflexiblity: 1) insulin resistance, 2) impaired lipid trafficking and hyperlipidemia, 3) a shift in substrate use toward glucose, and 4) a shift in muscle fiber type and ectopic fat storage. Altogether, this hypothesis places sedentary behaviors upstream on the list of factors involved in metabolic inflexibility, which is considered to be a primary impairment in several metabolic disorders such as obesity, insulin resistance, and type 2 diabetes mellitus.


Asunto(s)
Reposo en Cama/efectos adversos , Ejercicio Físico/fisiología , Enfermedades Metabólicas/etiología , Animales , Enfermedad Crónica , Humanos , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA