Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Clin Proteomics ; 13: 30, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27795698

RESUMEN

BACKGROUND: Correct identification of the amyloidosis-causing protein is crucial for clinical management. Recently the Mayo Clinic reported laser-capture microdissection (LCM) with liquid chromatography-coupled tandem mass spectrometry (MS/MS) as a new diagnostic tool for amyloid diagnosis. Here, we report an independent implementation of this proteomic diagnostics method at the Princess Alexandra Hospital Amyloidosis Centre in Brisbane, Australia. RESULTS: From 2010 to 2014, 138 biopsies received from 35 different organ sites were analysed by LCM-MS/MS using Congo Red staining to visualise amyloid deposits. There was insufficient tissue in the block for LCM for 7 cases. An amyloid forming protein was ultimately identified in 121 out of 131 attempted cases (94 %). Of the 121 successful cases, the Mayo Clinic amyloid proteomic signature (at least two of Serum Amyloid P, ApoE and ApoA4) was detected in 92 (76 %). Low levels of additional amyloid forming proteins were frequently identified with the main amyloid forming protein, which may reflect co-deposition of fibrils. Furthermore, vitronectin and clusterin were frequently identified in our samples. Adding vitronectin to the amyloid signature increases the number of positive cases, suggesting a potential 4th protein for the signature. In terms of clinical impact, amyloid typing by immunohistochemistry was attempted in 88 cases, reported as diagnostic in 39, however, 5 were subsequently revealed by proteomic analysis to be incorrect. Overall, the referring clinician's diagnosis of amyloid subtype was altered by proteomic analysis in 24 % of cases. While LCM-MS/MS was highly robust in protein identification, clinical information was still required for subtyping, particularly for systemic versus localized amyloidosis. CONCLUSIONS: This study reports the independent implementation and evaluation of a proteomics-based diagnostic for amyloidosis subtyping. Our results support LCM-MS/MS as a powerful new diagnostic technique for amyloidosis, but also identified some challenges and further development opportunities.

2.
Proteomics Clin Appl ; 15(2-3): e2000078, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33641263

RESUMEN

PURPOSE: To identify glucocorticoid-responsive proteins measurable in human serum that may have clinical utility in therapeutic drug monitoring and the diagnosis of cortisol excess or deficiency. EXPERIMENTAL DESIGN: A phased biomarker discovery strategy was conducted in two cohorts. Secretome from peripheral blood mononuclear cells (PBMC) isolated from six volunteers after ex vivo incubation ± dexamethasone (DEX) 100 ng/mL for 4 h and 24 h was used for candidate discovery and qualification using untargeted proteomics and a custom multiple reaction monitoring mass spectrometry (MRM-MS) assay, respectively. For validation, five candidates were measured by immunoassay in serum from an independent cohort (n = 20), sampled at 1200 h before and after 4 mg oral DEX. RESULTS: The discovery secretome proteomics data generated a shortlist of 45 candidates, with 43 measured in the final MRM-MS assay. Differential analysis revealed 16 proteins that were significant in at least one of two time points. In the validation cohort, 3/5 serum proteins were DEX-responsive, two significantly decreased: lysozyme C (p < 0.0001) and nucleophosmin-1 (p < 0.01), while high mobility group box 2 significantly increased (p < 0.01). CONCLUSIONS AND CLINICAL RELEVANCE: Using an ex vivo proteomic approach in PBMC, we have identified circulating glucocorticoid-responsive proteins which may have potential as serum biomarkers of glucocorticoid activity.


Asunto(s)
Glucocorticoides
3.
Clin Transl Med ; 11(4): e381, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33931969

RESUMEN

BACKGROUND: Caveolae proteins play diverse roles in cancer development and progression. In prostate cancer, non-caveolar caveolin-1 (CAV1) promotes metastasis, while CAVIN1 attenuates CAV1-induced metastasis. Here, we unveil a novel mechanism linking CAV1 to selective loading of exosomes with metastasis-promoting microRNAs. RESULTS: We identify hnRNPK as a CAV1-regulated microRNA binding protein. In the absence of CAVIN1, non-caveolar CAV1 drives localisation of hnRPNK to multi-vesicular bodies (MVBs), recruiting AsUGnA motif-containing miRNAs and causing their release within exosomes. This process is dependent on the lipid environment of membranes as shown by cholesterol depletion using methyl-ß-cyclodextrin or by treatment with n-3 polyunsaturated fatty acids. Consistent with a role in bone metastasis, knockdown of hnRNPK in prostate cancer PC3 cells abolished the ability of PC3 extracellular vesicles (EV) to induce osteoclastogenesis, and biofluid EV hnRNPK is elevated in metastatic prostate and colorectal cancer. CONCLUSIONS: Taken together, these results support a novel pan-cancer mechanism for CAV1-driven exosomal release of hnRNPK and associated miRNA in metastasis, which is modulated by the membrane lipid environment.


Asunto(s)
Caveolina 1/metabolismo , Neoplasias Colorrectales/metabolismo , Exosomas/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , MicroARNs/metabolismo , Neoplasias de la Próstata/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Humanos , Masculino , ARN Neoplásico/metabolismo
4.
Nat Commun ; 10(1): 3279, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332168

RESUMEN

Caveolae are specialized domains of the plasma membrane. Formation of these invaginations is dependent on the expression of Caveolin-1 or -3 and proteins of the cavin family. In response to stress, caveolae disassemble and cavins are released from caveolae, allowing cavins to potentially interact with intracellular targets. Here, we describe the intracellular (non-plasma membrane) cavin interactome using biotin affinity proteomics and mass spectrometry. We validate 47 potential cavin-interactor proteins using a cell-free expression system and protein-protein binding assays. These data, together with pathway analyses, reveal unknown roles for cavin proteins in metabolism and stress signaling. We validated the interaction between one candidate interactor protein, protein phosphatase 1 alpha (PP1α), and Cavin-1 and -3 and show that UV treatment causes release of Cavin3 from caveolae allowing interaction with, and inhibition of, PP1α. This interaction increases H2AX phosphorylation to stimulate apoptosis, identifying a pro-apoptotic signaling pathway from surface caveolae to the nucleus.


Asunto(s)
Apoptosis/fisiología , Caveolas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas de Unión al ARN/metabolismo , Apoptosis/efectos de la radiación , Caveolas/efectos de la radiación , Núcleo Celular/metabolismo , Histonas/metabolismo , Humanos , Espectrometría de Masas/métodos , Fosforilación/efectos de la radiación , Unión Proteica/efectos de la radiación , Transporte de Proteínas/efectos de la radiación , Proteómica/métodos , Rayos Ultravioleta
5.
Oncotarget ; 8(32): 52237-52255, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28881726

RESUMEN

Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by steroid hormones, particularly androgens, and the extracellular environment. Herein, we identify the secretion of CD9 positive extracellular vesicles (EV) by LNCaP and DUCaP PCa cells in response to dihydrotestosterone (DHT) and use nano-LC-MS/MS to identify the proteins present in these EV. Subsequent bioinformatic and pathway analyses of the mass spectrometry data identified pathologically relevant pathways that may be altered by EV contents. Western blot and CD9 EV TR-FIA assay confirmed a specific increase in the amount of CD9 positive EV in DHT-treated LNCaP and DUCaP cells and treatment of cells with EV enriched with CD9 after DHT exposure can induce proliferation in androgen-deprived conditions. siRNA knockdown of endogenous CD9 in LNCaPs reduced cellular proliferation and expression of AR and prostate specific antigen (PSA) however knockdown of AR did not alter CD9 expression, also implicating CD9 as an upstream regulator of AR. Moreover CD9 positive EV were also found to be significantly higher in plasma from prostate cancer patients in comparison with benign prostatic hyperplasia patients. We conclude that CD9 positive EV are involved in mediating paracrine signalling and contributing toward prostate cancer progression.

6.
J Proteomics ; 149: 3-6, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27084685

RESUMEN

Peptide generation by trypsin digestion is typically the first step in mass spectrometry-based proteomics experiments, including 'bottom-up' discovery and targeted proteomics using multiple reaction monitoring. Manual tryptic digest and the subsequent clean-up steps can add variability even before the sample reaches the analytical platform. While specialized filter plates and tips have been designed for automated sample processing, the specialty reagents required may not be accessible or feasible due to their high cost. Here, we report a lower-cost semi-automated protocol for in-gel digestion and GeLC using standard 96-well microplates. Further cost savings were realized by re-using reagent tips with optimized sample ordering. To evaluate the methodology, we compared a simple mixture of 7 proteins and a complex cell-lysate sample. The results across three replicates showed that our semi-automated protocol had performance equal to or better than a manual in-gel digestion with respect to replicate variability and level of contamination. In this paper, we also provide the Agilent Bravo method file, which can be adapted to other liquid handlers. The simplicity, reproducibility, and cost-effectiveness of our semi-automated protocol make it ideal for routine in-gel and GeLC sample preparations, as well as high throughput processing of large clinical sample cohorts.


Asunto(s)
Métodos Analíticos de la Preparación de la Muestra/economía , Ahorro de Costo , Ensayos Analíticos de Alto Rendimiento/economía , Péptidos/química , Proteolisis , Proteómica/economía , Proteómica/métodos , Tripsina/química , Extractos Celulares/química , Cromatografía en Gel , Análisis Costo-Beneficio , Geles , Espectrometría de Masas/economía , Proteínas/química , Reproducibilidad de los Resultados , Factores de Tiempo
7.
Oncotarget ; 6(10): 7438-53, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25924234

RESUMEN

Obesity and metabolic syndrome are associated with several cancers, however, the molecular mechanisms remain to be fully elucidated. Recent studies suggest that hypercholesterolemia increases intratumoral androgen signaling in prostate cancer, but it is unclear whether androgen-independent mechanisms also exist. Since hypercholesterolemia is associated with advanced, castrate-resistant prostate cancer, in this study, we aimed to determine whether and how hypercholesterolemia affects prostate cancer progression in the absence of androgen signaling. We demonstrate that diet-induced hypercholesterolemia promotes orthotopic xenograft PC-3 cell metastasis, concomitant with elevated expression of caveolin-1 and IQGAP1 in xenograft tumor tissues. In vitro cholesterol treatment of PC-3 cells stimulated migration and increased IQGAP1 and caveolin-1 protein level and localization to a detergent-resistant fraction. Down-regulation of caveolin-1 or IQGAP1 in PC-3 cells reduced migration and invasion in vitro, and hypercholesterolemia-induced metastasis in vivo. Double knock-down of caveolin-1 and IQGAP1 showed no additive effect, suggesting that caveolin-1 and IQGAP1 act via the same pathway. Taken together, our data show that hypercholesterolemia promotes prostate cancer metastasis independent of the androgen pathway, in part by increasing IQGAP1 and caveolin-1. These results have broader implications for managing metastasis of cancers in general as IQGAP1 and hypercholesterolemia are implicated in the progression of several cancers.


Asunto(s)
Caveolina 1/metabolismo , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patología , Neoplasias de la Próstata Resistentes a la Castración/sangre , Neoplasias de la Próstata Resistentes a la Castración/patología , Proteínas Activadoras de ras GTPasa/metabolismo , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia , Transducción de Señal
8.
Artículo en Inglés | MEDLINE | ID: mdl-25018864

RESUMEN

BACKGROUND: Tumour-derived extracellular vesicles (EVs) play a role in tumour progression; however, the spectrum of molecular mechanisms regulating EV secretion and cargo selection remain to be fully elucidated. We have reported that cavin-1 expression in prostate cancer PC3 cells reduced the abundance of a subset of EV proteins, concomitant with reduced xenograft tumour growth and metastasis. METHODS: We examined the functional outcomes and mechanisms of cavin-1 expression on PC3-derived EVs (PC3-EVs). RESULTS: PC3-EVs were internalized by osteoclast precursor RAW264.7 cells and primary human osteoblasts (hOBs) in vitro, stimulating osteoclastogenesis 37-fold and hOB proliferation 1.5-fold, respectively. Strikin gly, EVs derived from cavin-1-expressing PC3 cells (cavin-1-PC3-EVs) failed to induce multinucleate osteoblasts or hOB proliferation. Cavin-1 was not detected in EVs, indicating an indirect mechanism of action. EV morphology, size and quantity were also not affected by cavin-1 expression, suggesting that cavin-1 modulated EV cargo recruitment rather than release. While cavin-1-EVs had no osteoclastogenic function, they were internalized by RAW264.7 cells but at a reduced efficiency compared to control EVs. EV surface proteins are required for internalization of PC3-EVs by RAW264.7 cells, as proteinase K treatment abolished uptake of both control and cavin-1-PC3-EVs. Removal of sialic acid modifications by neuraminidase treatment increased the amount of control PC3-EVs internalized by RAW264.7 cells, without affecting cavin-1-PC3-EVs. This suggests that cavin-1 expression altered the glycosylation modifications on PC3-EV surface. Finally, cavin-1 expression did not affect EV in vivo tissue targeting as both control and cavin-1-PC3-EVs were predominantly retained in the lung and bone 24 hours after injection into mice. DISCUSSION: Taken together, our results reveal a novel pathway for EV cargo sorting, and highlight the potential of utilizing cavin-1-mediated pathways to attenuate metastatic prostate cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA