RESUMEN
A hallmark of high-risk childhood medulloblastoma is the dysregulation of RNA translation. Currently, it is unknown whether medulloblastoma dysregulates the translation of putatively oncogenic non-canonical open reading frames (ORFs). To address this question, we performed ribosome profiling of 32 medulloblastoma tissues and cell lines and observed widespread non-canonical ORF translation. We then developed a stepwise approach using multiple CRISPR-Cas9 screens to elucidate non-canonical ORFs and putative microproteins implicated in medulloblastoma cell survival. We determined that multiple lncRNA-ORFs and upstream ORFs (uORFs) exhibited selective functionality independent of main coding sequences. A microprotein encoded by one of these ORFs, ASNSD1-uORF or ASDURF, was upregulated, associated with MYC-family oncogenes, and promoted medulloblastoma cell survival through engagement with the prefoldin-like chaperone complex. Our findings underscore the fundamental importance of non-canonical ORF translation in medulloblastoma and provide a rationale to include these ORFs in future studies seeking to define new cancer targets.
Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Humanos , Biosíntesis de Proteínas , Meduloblastoma/genética , Sistemas de Lectura Abierta/genética , Supervivencia Celular/genética , Neoplasias Cerebelosas/genéticaRESUMEN
All species continuously evolve short open reading frames (sORFs) that can be templated for protein synthesis and may provide raw materials for evolutionary adaptation. We analyzed the evolutionary origins of 7,264 recently cataloged human sORFs and found that most were evolutionarily young and had emerged de novo. We additionally identified 221 previously missed sORFs potentially translated into peptides of up to 15 amino acids-all of which are smaller than the smallest human microprotein annotated to date. To investigate the bioactivity of sORF-encoded small peptides and young microproteins, we subjected 266 candidates to a mass-spectrometry-based interactome screen with motif resolution. Based on these interactomes and additional cellular assays, we can associate several candidates with mRNA splicing, translational regulation, and endocytosis. Our work provides insights into the evolutionary origins and interaction potential of young and small proteins, thereby helping to elucidate this underexplored territory of the human proteome.
Asunto(s)
Péptidos , Biosíntesis de Proteínas , Humanos , Sistemas de Lectura Abierta , Péptidos/genética , Proteómica , MicropéptidosRESUMEN
Ribosome profiling (Ribo-Seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of noncanonical sites of ribosome translation outside the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7000 noncanonical ORFs are translated, which, at first glance, has the potential to expand the number of human protein CDSs by 30%, from â¼19,500 annotated CDSs to over 26,000 annotated CDSs. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of noncanonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome but searching for guidance on how to proceed. Here, we discuss the current state of noncanonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein coding."
Asunto(s)
Biosíntesis de Proteínas , Proteoma , Humanos , Proteoma/metabolismo , Proteómica/métodos , Perfilado de Ribosomas , Ribosomas/metabolismo , Sistemas de Lectura AbiertaRESUMEN
The existence of naturally occurring ribosome heterogeneity is now a well-acknowledged phenomenon. However, whether this heterogeneity leads to functionally diverse 'specialized ribosomes' is still a controversial topic. Here, we explore the biological function of RPL3L (uL3L), a ribosomal protein (RP) paralogue of RPL3 (uL3) that is exclusively expressed in skeletal muscle and heart tissues, by generating a viable homozygous Rpl3l knockout mouse strain. We identify a rescue mechanism in which, upon RPL3L depletion, RPL3 becomes up-regulated, yielding RPL3-containing ribosomes instead of RPL3L-containing ribosomes that are typically found in cardiomyocytes. Using both ribosome profiling (Ribo-seq) and a novel orthogonal approach consisting of ribosome pulldown coupled to nanopore sequencing (Nano-TRAP), we find that RPL3L modulates neither translational efficiency nor ribosome affinity towards a specific subset of transcripts. In contrast, we show that depletion of RPL3L leads to increased ribosome-mitochondria interactions in cardiomyocytes, which is accompanied by a significant increase in ATP levels, potentially as a result of fine-tuning of mitochondrial activity. Our results demonstrate that the existence of tissue-specific RP paralogues does not necessarily lead to enhanced translation of specific transcripts or modulation of translational output. Instead, we reveal a complex cellular scenario in which RPL3L modulates the expression of RPL3, which in turn affects ribosomal subcellular localization and, ultimately, mitochondrial activity.
Ribosomes are macromolecular machines responsible for protein synthesis in all living beings. Recent studies have shown that ribosomes can be heterogeneous in their structure, possibly leading to a specialized function. Here, we focus on RPL3L, a ribosomal protein expressed exclusively in striated muscles. We find that the deletion of the Rpl3l gene in a mouse model triggers a compensation mechanism, in which the missing RPL3L protein is replaced by its paralogue, RPL3. Furthermore, we find that RPL3-containing ribosomes establish closer interactions with mitochondria, cellular organelles responsible for energy production, leading to higher energy production when compared with RPL3L-containing ribosomes. Finally, we show that the RPL3RPL3L compensation mechanism is also triggered in heart disease conditions, such as hypertrophy and myocardial infarction.
Asunto(s)
Corazón , Mitocondrias , Proteínas Ribosómicas , Ribosomas , Animales , Ratones , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismoRESUMEN
The translatome can be defined as the sum of the RNA sequences that are translated into proteins in the cell by the ribosomal machinery. Until recently, it was generally assumed that the translatome was essentially restricted to evolutionary conserved proteins encoded by the set of annotated protein-coding genes. However, it has become increasingly clear that it also includes small regulatory open reading frames (ORFs), functional micropeptides, de novo proteins, and the pervasive translation of likely nonfunctional proteins. Many of these ORFs have been discovered thanks to the development of ribosome profiling, a technique to sequence ribosome-protected RNA fragments. To fully capture the diversity of translated ORFs, we propose a comprehensive classification that includes the new types of translated ORFs in addition to standard proteins.
Asunto(s)
Evolución Molecular , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas , ARN/genética , Biología Computacional , Secuencia Conservada/genética , Regulación de la Expresión Génica/genética , Ribosomas/genéticaRESUMEN
RNA-binding proteins (RBPs) can regulate more than a single aspect of RNA metabolism. We searched for such previously undiscovered multifunctionality within a set of 143 RBPs, by defining the predictive value of RBP abundance for the transcription and translation levels of known RBP target genes across 80 human hearts. This led us to newly associate 27 RBPs with cardiac translational regulation in vivo. Of these, 21 impacted both RNA expression and translation, albeit for virtually independent sets of target genes. We highlight a subset of these, including G3BP1, PUM1, UCHL5, and DDX3X, where dual regulation is achieved through differential affinity for target length, by which separate biological processes are controlled. Like the RNA helicase DDX3X, the known splicing factors EFTUD2 and PRPF8-all identified as multifunctional RBPs by our analysis-selectively influence target translation rates depending on 5' UTR structure. Our analyses identify dozens of RBPs as being multifunctional and pinpoint potential novel regulators of translation, postulating unanticipated complexity of protein-RNA interactions at consecutive stages of gene expression.
Asunto(s)
Regulación de la Expresión Génica/genética , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Biología Computacional , Humanos , Miocardio/citología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismoRESUMEN
High throughput RNA sequencing techniques have revealed that a large fraction of the genome is transcribed into long non-coding RNAs (lncRNAs). Unlike canonical protein-coding genes, lncRNAs do not contain long open reading frames (ORFs) and tend to be poorly conserved across species. However, many of them contain small ORFs (sORFs) that exhibit translation signatures according to ribosome profiling or proteomics data. These sORFs are a source of putative novel proteins; some of them may confer a selective advantage and be maintained over time, a process known as de novo gene birth. Here we review the mechanisms by which randomly occurring sORFs in lncRNAs can become new functional proteins.
Asunto(s)
Evolución Molecular , Genoma , Sistemas de Lectura Abierta , Biosíntesis de Proteínas , ARN Largo no Codificante/genética , Ribosomas/genética , Animales , Encéfalo/metabolismo , Humanos , Hígado/metabolismo , Masculino , Anotación de Secuencia Molecular , Miocardio/metabolismo , Especificidad de Órganos , ARN Largo no Codificante/clasificación , ARN Largo no Codificante/metabolismo , Ribosomas/clasificación , Ribosomas/metabolismo , Testículo/metabolismo , Transcripción GenéticaRESUMEN
The birth of new genes is an important motor of evolutionary innovation. Whereas many new genes arise by gene duplication, others originate at genomic regions that did not contain any genes or gene copies. Some of these newly expressed genes may acquire coding or non-coding functions and be preserved by natural selection. However, it is yet unclear which is the prevalence and underlying mechanisms of de novo gene emergence. In order to obtain a comprehensive view of this process, we have performed in-depth sequencing of the transcriptomes of four mammalian species--human, chimpanzee, macaque, and mouse--and subsequently compared the assembled transcripts and the corresponding syntenic genomic regions. This has resulted in the identification of over five thousand new multiexonic transcriptional events in human and/or chimpanzee that are not observed in the rest of species. Using comparative genomics, we show that the expression of these transcripts is associated with the gain of regulatory motifs upstream of the transcription start site (TSS) and of U1 snRNP sites downstream of the TSS. In general, these transcripts show little evidence of purifying selection, suggesting that many of them are not functional. However, we find signatures of selection in a subset of de novo genes which have evidence of protein translation. Taken together, the data support a model in which frequently-occurring new transcriptional events in the genome provide the raw material for the evolution of new proteins.
Asunto(s)
Evolución Molecular , Genes , Genoma Humano , Pan troglodytes/genética , Ribonucleoproteína Nuclear Pequeña U1/genética , Animales , Secuencia de Bases , Femenino , Expresión Génica , Humanos , Macaca/genética , Masculino , Ratones , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Testículo/fisiología , Sitio de Iniciación de la TranscripciónRESUMEN
The expression of tumor-specific antigens during cancer progression can trigger an immune response against the tumor. Here, we investigate if microproteins encoded by noncanonical open reading frames (ncORFs) are a relevant source of tumor-specific antigens. We analyze RNA sequencing data from 117 hepatocellular carcinoma (HCC) tumors and matched healthy tissue together with ribosome profiling and immunopeptidomics data. Combining human leukocyte antigen-epitope binding predictions and experimental validation experiments, we conclude that around 40% of the tumor-specific antigens in HCC are likely to be derived from ncORFs, including two peptides that can trigger an immune response in humanized mice. We identify a subset of 33 tumor-specific long noncoding RNAs expressing novel cancer antigens shared by more than 10% of the HCC samples analyzed, which, when combined, cover a large proportion of the patients. The results of the study open avenues for extending the range of anticancer vaccines.
Asunto(s)
Antígenos de Neoplasias , Carcinoma Hepatocelular , Neoplasias Hepáticas , Sistemas de Lectura Abierta , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Animales , Ratones , Estudios de Cohortes , ARN Largo no Codificante/genética , Regulación Neoplásica de la Expresión Génica , MicropéptidosRESUMEN
Evolutionary innovations can be driven by changes in the rates of RNA translation and the emergence of new genes and small open reading frames (sORFs). In this study, we characterized the transcriptional and translational landscape of the hearts of four primate and two rodent species through integrative ribosome and transcriptomic profiling, including adult left ventricle tissues and induced pluripotent stem cell-derived cardiomyocyte cell cultures. We show here that the translational efficiencies of subunits of the mitochondrial oxidative phosphorylation chain complexes IV and V evolved rapidly across mammalian evolution. Moreover, we discovered hundreds of species-specific and lineage-specific genomic innovations that emerged during primate evolution in the heart, including 551 genes, 504 sORFs and 76 evolutionarily conserved genes displaying human-specific cardiac-enriched expression. Overall, our work describes the evolutionary processes and mechanisms that have shaped cardiac transcription and translation in recent primate evolution and sheds light on how these can contribute to cardiac development and disease.
Asunto(s)
Evolución Molecular , Miocitos Cardíacos , Sistemas de Lectura Abierta , Biosíntesis de Proteínas , Animales , Humanos , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas/genética , Miocitos Cardíacos/metabolismo , Especificidad de la Especie , Transcriptoma , Perfilación de la Expresión Génica/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Ribosomas/metabolismo , Ribosomas/genética , Primates/genética , Células CultivadasRESUMEN
A major scientific drive is to characterize the protein-coding genome as it provides the primary basis for the study of human health. But the fundamental question remains: what has been missed in prior genomic analyses? Over the past decade, the translation of non-canonical open reading frames (ncORFs) has been observed across human cell types and disease states, with major implications for proteomics, genomics, and clinical science. However, the impact of ncORFs has been limited by the absence of a large-scale understanding of their contribution to the human proteome. Here, we report the collaborative efforts of stakeholders in proteomics, immunopeptidomics, Ribo-seq ORF discovery, and gene annotation, to produce a consensus landscape of protein-level evidence for ncORFs. We show that at least 25% of a set of 7,264 ncORFs give rise to translated gene products, yielding over 3,000 peptides in a pan-proteome analysis encompassing 3.8 billion mass spectra from 95,520 experiments. With these data, we developed an annotation framework for ncORFs and created public tools for researchers through GENCODE and PeptideAtlas. This work will provide a platform to advance ncORF-derived proteins in biomedical discovery and, beyond humans, diverse animals and plants where ncORFs are similarly observed.
RESUMEN
Genes and translated open reading frames (ORFs) that emerged de novo from previously non-coding sequences provide species with opportunities for adaptation. When aberrantly activated, some human-specific de novo genes and ORFs have disease-promoting properties-for instance, driving tumour growth. Thousands of putative de novo coding sequences have been described in humans, but we still do not know what fraction of those ORFs has readily acquired a function. Here, we discuss the challenges and controversies surrounding the detection, mechanisms of origin, annotation, validation and characterization of de novo genes and ORFs. Through manual curation of literature and databases, we provide a thorough table with most de novo genes reported for humans to date. We re-evaluate each locus by tracing the enabling mutations and list proposed disease associations, protein characteristics and supporting evidence for translation and protein detection. This work will support future explorations of de novo genes and ORFs in humans.
Asunto(s)
Sistemas de Lectura Abierta , Humanos , ExonesRESUMEN
Ribosome profiling (Ribo-seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of non-canonical sites of ribosome translation outside of the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7,000 non-canonical open reading frames (ORFs) are translated, which, at first glance, has the potential to expand the number of human protein-coding sequences by 30%, from â¼19,500 annotated CDSs to over 26,000. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of non-canonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome, but searching for guidance on how to proceed. Here, we discuss the current state of non-canonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein-coding". In brief: The human genome encodes thousands of non-canonical open reading frames (ORFs) in addition to protein-coding genes. As a nascent field, many questions remain regarding non-canonical ORFs. How many exist? Do they encode proteins? What level of evidence is needed for their verification? Central to these debates has been the advent of ribosome profiling (Ribo-seq) as a method to discern genome-wide ribosome occupancy, and immunopeptidomics as a method to detect peptides that are processed and presented by MHC molecules and not observed in traditional proteomics experiments. This article provides a synthesis of the current state of non-canonical ORF research and proposes standards for their future investigation and reporting. Highlights: Combined use of Ribo-seq and proteomics-based methods enables optimal confidence in detecting non-canonical ORFs and their protein products.Ribo-seq can provide more sensitive detection of non-canonical ORFs, but data quality and analytical pipelines will impact results.Non-canonical ORF catalogs are diverse and span both high-stringency and low-stringency ORF nominations.A framework for standardized non-canonical ORF evidence will advance the research field.
RESUMEN
A hallmark of high-risk childhood medulloblastoma is the dysregulation of RNA translation. Currently, it is unknown whether medulloblastoma dysregulates the translation of putatively oncogenic non-canonical open reading frames. To address this question, we performed ribosome profiling of 32 medulloblastoma tissues and cell lines and observed widespread non-canonical ORF translation. We then developed a step-wise approach to employ multiple CRISPR-Cas9 screens to elucidate functional non-canonical ORFs implicated in medulloblastoma cell survival. We determined that multiple lncRNA-ORFs and upstream open reading frames (uORFs) exhibited selective functionality independent of the main coding sequence. One of these, ASNSD1-uORF or ASDURF, was upregulated, associated with the MYC family oncogenes, and was required for medulloblastoma cell survival through engagement with the prefoldin-like chaperone complex. Our findings underscore the fundamental importance of non-canonical ORF translation in medulloblastoma and provide a rationale to include these ORFs in future cancer genomics studies seeking to define new cancer targets.
RESUMEN
Glucocorticoids such as dexamethasone (Dex) are widely used to treat both acute and chronic inflammatory conditions. They regulate immune responses by dampening cell-mediated immunity in a glucocorticoid receptor (GR)-dependent manner, by suppressing the expression of pro-inflammatory cytokines and chemokines and by stimulating the expression of anti-inflammatory mediators. Despite its evident clinical benefit, the mechanistic underpinnings of the gene regulatory networks transcriptionally controlled by GR in a context-specific manner remain mysterious. Next generation sequencing methods such mRNA sequencing (RNA-seq) and Ribosome profiling (ribo-seq) provide tools to investigate the transcriptional and post-transcriptional mechanisms that govern gene expression. Here, we integrate matched RNA-seq data with ribo-seq data from human acute monocytic leukemia (THP-1) cells treated with the TLR4 ligand lipopolysaccharide (LPS) and with Dex, to investigate the global transcriptional and translational regulation (translational efficiency, ΔTE) of Dex-responsive genes. We find that the expression of most of the Dex-responsive genes are regulated at both the transcriptional and the post-transcriptional level, with the transcriptional changes intensified on the translational level. Overrepresentation pathway analysis combined with STRING protein network analysis and manual functional exploration, identified these genes to encode immune effectors and immunomodulators that contribute to macrophage-mediated immunity and to the maintenance of macrophage-mediated immune homeostasis. Further research into the translational regulatory network underlying the GR anti-inflammatory response could pave the way for the development of novel immunomodulatory therapeutic regimens with fewer undesirable side effects.
RESUMEN
The role of alternative promoter usage in tissue-specific gene expression has been well established; however, its role in complex diseases is poorly understood. We performed cap analysis of gene expression (CAGE) sequencing from the left ventricle of a rat model of hypertension, the spontaneously hypertensive rat (SHR), and a normotensive strain, Brown Norway to understand the role of alternative promoter usage in complex disease. We identified 26,560 CAGE-defined transcription start sites in the rat left ventricle, including 1,970 novel cardiac transcription start sites. We identified 28 genes with alternative promoter usage between SHR and Brown Norway, which could lead to protein isoforms differing at the amino terminus between two strains and 475 promoter switching events altering the length of the 5' UTR. We found that the shift in Insr promoter usage was significantly associated with insulin levels and blood pressure within a panel of HXB/BXH recombinant inbred rat strains, suggesting that hyperinsulinemia due to insulin resistance might lead to hypertension in SHR. Our study provides a preliminary evidence of alternative promoter usage in complex diseases.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Hipertensión , Regiones Promotoras Genéticas/genética , Análisis de Secuencia de ARN/métodos , Transcripción Genética/genética , Animales , Femenino , Hipertensión/genética , Hipertensión/metabolismo , Masculino , Ratas , Ratas Endogámicas SHRRESUMEN
The northern white rhinoceros (NWR) is probably the earth's most endangered mammal. To rescue the functionally extinct species, we aim to employ induced pluripotent stem cells (iPSCs) to generate gametes and subsequently embryos in vitro. To elucidate the regulation of pluripotency and differentiation of NWR PSCs, we generated iPSCs from a deceased NWR female using episomal reprogramming, and observed surprising similarities to human PSCs. NWR iPSCs exhibit a broad differentiation potency into the three germ layers and trophoblast, and acquire a naïve-like state of pluripotency, which is pivotal to differentiate PSCs into primordial germ cells (PGCs). Naïve culturing conditions induced a similar expression profile of pluripotency related genes in NWR iPSCs and human ESCs. Furthermore, naïve-like NWR iPSCs displayed increased expression of naïve and PGC marker genes, and a higher integration propensity into developing mouse embryos. As the conversion process was aided by ectopic BCL2 expression, and we observed integration of reprogramming factors, the NWR iPSCs presented here are unsuitable for gamete production. However, the gained insights into the developmental potential of both primed and naïve-like NWR iPSCs are fundamental for in future PGC-specification in order to rescue the species from extinction using cryopreserved somatic cells.
Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular/genética , Femenino , Células Germinativas/metabolismo , Estratos Germinativos , Ratones , Perisodáctilos/genéticaRESUMEN
The human transcriptome contains thousands of small open reading frames (sORFs) that encode microproteins whose functions remain largely unexplored. Here, we show that TINCR lncRNA encodes pTINCR, an evolutionary conserved ubiquitin-like protein (UBL) expressed in many epithelia and upregulated upon differentiation and under cellular stress. By gain- and loss-of-function studies, we demonstrate that pTINCR is a key inducer of epithelial differentiation in vitro and in vivo. Interestingly, low expression of TINCR associates with worse prognosis in several epithelial cancers, and pTINCR overexpression reduces malignancy in patient-derived xenografts. At the molecular level, pTINCR binds to SUMO through its SUMO interacting motif (SIM) and to CDC42, a Rho-GTPase critical for actin cytoskeleton remodeling and epithelial differentiation. Moreover, pTINCR increases CDC42 SUMOylation and promotes its activation, triggering a pro-differentiation cascade. Our findings suggest that the microproteome is a source of new regulators of cell identity relevant for cancer.
Asunto(s)
Neoplasias , ARN Largo no Codificante , Sumoilación , Humanos , Neoplasias/genética , Proteínas de Unión al GTP rho/metabolismo , Ubiquitinas/metabolismo , ARN Largo no Codificante/genéticaRESUMEN
Pathogenic variants in genes that cause dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM) convey high risks for the development of heart failure through unknown mechanisms. Using single-nucleus RNA sequencing, we characterized the transcriptome of 880,000 nuclei from 18 control and 61 failing, nonischemic human hearts with pathogenic variants in DCM and ACM genes or idiopathic disease. We performed genotype-stratified analyses of the ventricular cell lineages and transcriptional states. The resultant DCM and ACM ventricular cell atlas demonstrated distinct right and left ventricular responses, highlighting genotype-associated pathways, intercellular interactions, and differential gene expression at single-cell resolution. Together, these data illuminate both shared and distinct cellular and molecular architectures of human heart failure and suggest candidate therapeutic targets.
Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Análisis de la Célula Individual , Transcriptoma , Displasia Ventricular Derecha Arritmogénica/genética , Atlas como Asunto , Cardiomiopatía Dilatada/genética , Núcleo Celular/genética , Insuficiencia Cardíaca/genética , Ventrículos Cardíacos , Humanos , RNA-SeqRESUMEN
BACKGROUND: A large fraction of genes contains upstream ORFs (uORFs) in the 5' untranslated region (5'UTR). The translation of uORFs can inhibit the translation of the main coding sequence, for example by causing premature dissociation of the two ribosomal units or ribosome stalling. However, it is currently unknown if most uORFs are inhibitory or if this activity is restricted to specific cases. Here we interrogate ribosome profiling data from three different stress experiments in yeast to gain novel insights into this question. RESULTS: By comparing ribosome occupancies in different conditions and experiments we obtain strong evidence that, in comparison to primary coding sequences (CDS), which undergo translational arrest during stress, the translation of uORFs is mostly unaffected by changes in the environment. As a result, the relative abundance of uORF-encoded peptides increases during stress. In general, the changes in the translational efficiency of regions containing uORFs do not seem to affect downstream translation. The exception are uORFs found in a subset of genes that are significantly up-regulated at the level of translation during stress; these uORFs tend to be translated at lower levels in stress conditions than in optimal growth conditions, facilitating the translation of the CDS during stress. We find new examples of uORF-mediated regulation of translation, including the Gcn4 functional homologue fil1 and ubi4 genes in S. pombe. CONCLUSION: We find evidence that the relative amount of uORF-encoded peptides increases during stress. The increased translation of uORFs is however uncoupled from the general CDS translational repression observed during stress. In a subset of genes that encode proteins that need to be rapidly synthesized upon stress uORFs act as translational switches.