Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Am Chem Soc ; 146(12): 8269-8279, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38498973

RESUMEN

Despite being fundamental to the understanding of solid-state electrolytes (SSEs), little is known on the degree of coordination between mobile ions in diffusive events, thus hindering a detailed comprehension and possible rational design of SSEs. Here, we introduce an unsupervised k-means clustering approach that is able to identify ion-hopping events and correlations between many mobile ions and apply it to a comprehensive ab initio MD database comprising several families of inorganic SSEs and millions of ionic configurations. It is found that despite two-body interactions between mobile ions being the largest, higher-order n-ion (2 < n) correlations are most frequent. Specifically, we prove a general exponential decaying law for the probability density function governing the number of concerted mobile ions. For the particular case of Li-based SSEs, it is shown that the average number of correlated mobile ions amounts to 10 ± 5 and that this result is practically independent of the temperature. Interestingly, our data-driven analysis reveals that fast-ionic diffusion strongly and positively correlates with ample hopping lengths and long hopping spans but not with high hopping frequencies and short interstitial residence times. Finally, it is shown that neglection of many-ion correlations generally leads to a modest overestimation of the hopping frequency that roughly is proportional to the average number of correlated mobile ions.

2.
Phys Rev Lett ; 133(11): 116401, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39331993

RESUMEN

Solid-state cooling presents an energy-efficient and environmentally friendly alternative to traditional refrigeration technologies that rely on thermodynamic cycles involving greenhouse gases. However, conventional caloric effects face several challenges that impede their practical application in refrigeration devices. First, operational temperature conditions must align closely with zero-field phase-transition points; otherwise, the required driving fields become excessively large. However, phase transitions occur infrequently near room temperature. Additionally, caloric effects typically exhibit strong temperature dependence and are sizable only within relatively narrow temperature ranges. In this Letter, we employ first-principles simulation methods to demonstrate that light-driven phase transitions in polar oxide perovskites have the potential to overcome such limitations. Specifically, for the prototypical ferroelectric KNbO_{3} we illustrate the existence of giant "photocaloric" effects induced by light absorption (ΔS_{PC}∼100 J K^{-1} kg^{-1} and ΔT_{PC}∼10 K) across a vast temperature range of several hundred Kelvin, encompassing room temperature. These findings are expected to be generalizable to other materials exhibiting similar polar behavior.

3.
Phys Chem Chem Phys ; 25(26): 17450-17459, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37357539

RESUMEN

Solid-state cooling applications based on electrocaloric (EC) effects are particularly promising from a technological point of view due to their downsize scalability and natural implementation in circuitry. However, EC effects typically involve materials that contain toxic substances and require relatively large electric fields (∼100-1000 kV cm-1) that cause fateful leakage current and dielectric loss problems. Here, we propose a possible solution to these practical issues that consists of concertedly applying hydrostatic pressure and electric fields on lead-free multiferroic materials. We theoretically demonstrate this strategy by performing first-principles simulations on supertetragonal BiFe1-xCoxO3 solid solutions (BFCO). It is shown that hydrostatic pressure, besides adjusting the occurrence of EC effects to near room temperature, can reduce enormously the intensity of driving electric fields. For pressurized BFCO, we estimate a colossal room-temperature EC strength, defined as the ratio of the adiabatic EC temperature change by an applied electric field, of ∼1 K cm kV-1, a value that is several orders of magnitude larger than those routinely measured in uncompressed ferroelectrics.

4.
Phys Chem Chem Phys ; 25(29): 19660-19665, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37436102

RESUMEN

Point defects can be used to tailor the properties of semiconductors, but can also have undesired effects on electronic and thermal transport, particularly in ultrascaled nanostructures, such as nanowires. Here we use all-atom molecular dynamics to study the effect that different concentrations and spatial distributions of vacancies have on the thermal conductivity of Si nanowires, overcoming the limitations of previous studies. Although vacancies are not as effective as the nanovoids found in e.g. porous Si, they can still reduce the thermal conductivity in ultrathin Si nanowires by more than a factor of two, when found in concentrations smaller than 1%. We also present arguments against the so-called self-purification mechanism, which is sometimes suggested to take place and proposes that vacancies have no influence on transport phenomena in nanowires.

5.
Nano Lett ; 21(8): 3619-3625, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33843244

RESUMEN

Recently synthesized hexagonal group IV materials are a promising platform to realize efficient light emission that is closely integrated with electronics. A high crystal quality is essential to assess the intrinsic electronic and optical properties of these materials unaffected by structural defects. Here, we identify a previously unknown partial planar defect in materials with a type I3 basal stacking fault and investigate its structural and electronic properties. Electron microscopy and atomistic modeling are used to reconstruct and visualize this stacking fault and its terminating dislocations in the crystal. From band structure calculations coupled to photoluminescence measurements, we conclude that the I3 defect does not create states within the hex-Ge and hex-Si band gap. Therefore, the defect is not detrimental to the optoelectronic properties of the hex-SiGe materials family. Finally, highlighting the properties of this defect can be of great interest to the community of hex-III-Ns, where this defect is also present.

6.
Faraday Discuss ; 222(0): 217-239, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32108213

RESUMEN

Silicon nanocrystals and nanowires have been extensively studied because of their novel properties and their applications in electronic, optoelectronic, photovoltaic, thermoelectric and biological devices. Here we discuss results from ab initio calculations for undoped and doped Si nanocrystals and nanowires, showing how theory can aid and improve comprehension of the structural, electronic and optical properties of these systems.

7.
Nano Lett ; 19(2): 866-876, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30608707

RESUMEN

We studied the physics of common p- and n-type dopants in hexagonal-diamond Si, a Si polymorph that can be synthesized in nanowire geometry without the need of extreme pressure conditions, by means of first-principles electronic structure calculations and compared our results with those for the well-known case of cubic-diamond nanowires. We showed that (i) as observed in recent experiments, at larger diameters (beyond the quantum confinement regime) p-type dopants prefer the hexagonal-diamond phase with respect to the cubic one as a consequence of the stronger degree of three-fold coordination of the former, while n-type dopants are at a first approximation indifferent to the polytype of the host lattice; (ii) in ultrathin nanowires, because of the lower symmetry with respect to bulk systems and the greater freedom of structural relaxation, the order is reversed and both types of dopant slightly favor substitution at cubic lattice sites; (iii) the difference in formation energies leads, particularly in thicker nanowires, to larger concentration differences in different polytypes, which can be relevant for cubic-hexagonal homojunctions; (iv) ultrasmall diameters exhibit, regardless of the crystal phase, a pronounced surface segregation tendency for p-type dopants. Overall these findings shed light on the role of crystal phase in the doping mechanism at the nanoscale and could have a great potential in view of the recent experimental works on group IV nanowires polytypes.

8.
Nano Lett ; 19(7): 4702-4711, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31203630

RESUMEN

One of the current challenges in nanoscience is tailoring the phononic properties of a material. This has long been a rather elusive task because several phonons have wavelengths in the nanometer range. Thus, high quality nanostructuring at that length-scale, unavailable until recently, is necessary for engineering the phonon spectrum. Here we report on the continuous tuning of the phononic properties of a twinning superlattice GaP nanowire by controlling its periodicity. Our experimental results, based on Raman spectroscopy and rationalized by means of ab initio theoretical calculations, give insight into the relation between local crystal structure, overall lattice symmetry, and vibrational properties, demonstrating how material engineering at the nanoscale can be successfully employed in the rational design of the phonon spectrum of a material.

9.
Phys Rev Lett ; 123(18): 185901, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31763887

RESUMEN

We demonstrate theoretically how, by imposing epitaxial strain in a ferroelectric perovskite, it is possible to achieve a dynamical control of phonon propagation by means of external electric fields, which yields a giant electrophononic response, i.e., the dependence of the lattice thermal conductivity on external electric fields. Specifically, we study the strain-induced manipulation of the lattice structure and analyze its interplay with the electrophononic response. We show that tensile biaxial strain can drive the system to a regime where the electrical polarization can be effortlessly rotated and thus yield giant electrophononic responses that are at least one order of magnitude larger than in the unstrained system. These results derive directly from the almost divergent behavior of the electrical susceptibility at those critical strains that drive the polarization on the verge of a spontaneous rotation.

10.
Nano Lett ; 18(11): 7075-7084, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30185053

RESUMEN

Semiconducting nanowires (NWs) offer the unprecedented opportunity to host different crystal phases in a nanostructure, which enables the formation of polytypic heterostructures where the material composition is unchanged. This characteristic boosts the potential of polytypic heterostructured NWs for optoelectronic and phononic applications. In this work, we investigate cubic Ge NWs where small (∼20 nm) hexagonal domains are formed due to a strain-induced phase transformation. By combining a nondestructive optical technique (Raman spectroscopy) with density-functional theory (DFT) calculations, we assess the phonon properties of hexagonal Ge, determine the crystal phase variations along the NW axis, and, quite remarkably, reconstruct the relative orientation of the two polytypes. Moreover, we provide information on the electronic band alignment of the heterostructure at points of the Brillouin zone different from the one (Γ) where the direct band gap recombination in hexagonal Ge takes place. We demonstrate the versatility of Raman spectroscopy and show that it can be used to determine the main crystalline, phononic, and electronic properties of the most challenging type of heterostructure (a polytypic, nanoscale heterostructure with constant material composition). The general procedure that we establish can be applied to several types of heterostructures.

11.
Phys Chem Chem Phys ; 20(35): 22623-22628, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30131997

RESUMEN

We critically readdress the definition of thermal boundary resistance at an interface between two semiconductors. By means of atomistic simulations we provide evidence that the widely used Kapitza formalism predicts thermal boundary resistance values in good agreement with the more rigorous Onsager non-equilibrium thermodynamics picture. The latter is, however, better suited to provide physical insight on interface thermal rectification phenomena. We identify the factors that determine the temperature profile across the interface and the source of interface thermal rectification. To this end we perform non-equilibrium molecular dynamics computational experiments on a Si-Ge system with a graded compositional interface of varying thickness, considering thermal bias of different sign.

12.
Nano Lett ; 17(8): 4753-4758, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28654293

RESUMEN

Recent advances in the synthetic growth of nanowires have given access to crystal phases that in bulk are only observed under extreme pressure conditions. Here, we use first-principles methods based on density functional theory and many-body perturbation theory to show that a suitable mixing of hexagonal Si and hexagonal Ge yields a direct bandgap with an optically permitted transition. Comparison of the calculated radiative lifetimes with typical values of nonradiative recombination mechanisms indicates that optical emission will be the dominant recombination mechanism. These findings pave the way to the development of silicon-based optoelectronic devices, thus far hindered by the poor light emission efficiency of cubic Si.

13.
Nano Lett ; 16(9): 5694-700, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27530077

RESUMEN

Recent experimental investigations have confirmed the possibility to synthesize and exploit polytypism in group IV nanowires. Driven by this promising evidence, we use first-principles methods based on density functional theory and many-body perturbation theory to investigate the electronic and optical properties of hexagonal-diamond and cubic-diamond Si NWs as well as their homojunctions. We show that hexagonal-diamond NWs are characterized by a more pronounced quantum confinement effect than cubic-diamond NWs. Furthermore, they absorb more light in the visible region with respect to cubic-diamond ones and, for most of the studied diameters, they are direct band gap materials. The study of the homojunctions reveals that the diameter has a crucial effect on the band alignment at the interface. In particular, at small diameters the band-offset is type-I whereas at experimentally relevant sizes the offset turns up to be of type-II. These findings highlight intriguing possibilities to modulate electron and hole separations as well as electronic and optical properties by simply modifying the crystal phase and the size of the junction.

14.
Phys Chem Chem Phys ; 18(37): 26262-26267, 2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-27722390

RESUMEN

We study thermal transport in isotopically disordered Si nanowires, discussing the feasibility of phonon engineering for thermoelectric applications within these systems. To this purpose, we carry out atomistic molecular dynamics and nonequilibrium Green's function calculations to characterize the dependence of the thermal conductance as a function of the isotope concentration, isotope radial distribution and temperature. We show that a reduction of the conductivity of up to 20% can be achieved with suitable isotope blends at room temperature and approximately 50% at low temperature. Interestingly, precise control of the isotope composition or radial distribution is not needed. An isotope disordered nanowire roughly behaves like a low-pass filter, as isotope impurities are transparent for long wave-length acoustic phonons, while only mid- and high-frequency optical phonons undergo significant scattering.

15.
Phys Chem Chem Phys ; 18(20): 13741-5, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27148698

RESUMEN

We perform computational experiments using nonequilibrium molecular dynamics simulations, showing that the interface between two solid materials can be described as an autonomous thermodynamic system. We verify the local equilibrium and give support to the Gibbs description of the interface also away from the global equilibrium. In doing so, we reconcile the common formulation of the thermal boundary resistance as the ratio between the temperature discontinuity at the interface and the heat flux with a more rigorous derivation from nonequilibrium thermodynamics. We also show that thermal boundary resistance of a junction between two pure solid materials can be regarded as an interface property, depending solely on the interface temperature, as implicitly assumed in some widely used continuum models, such as the acoustic mismatch model. Thermal rectification can be understood on the basis of different interface temperatures for the two flow directions.

16.
Nano Lett ; 15(5): 3425-30, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25840046

RESUMEN

We study Si-SiC core-shell nanowires by means of electronic structure first-principles calculations. We show that the strain induced by the growth of a lattice-mismatched SiC shell can drive a semiconductor-metal transition, which in the case of ultrathin Si cores is already observed for shells of more than one monolayer. Core-shell nanowires with thicker cores, however, remain semiconducting even when four SiC monolayers are grown, paving the way to versatile, biocompatible nanowire-based sensors.

17.
Nano Lett ; 15(12): 8255-9, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26595086

RESUMEN

We show that thermal rectification by design is possible by joining/growing Si nanowires (SiNWs) with sections of appropriately selected diameters (i.e., telescopic nanowires). This is done, first, by showing that the heat equation can be applied at the nanoscale (NW diameters down to 5 nm). We (a) obtain thermal conductivity versus temperature, κ(T), curves from molecular dynamics (MD) simulations for SiNWs of three different diameters, then (b) we conduct MD simulations of a telescopic NW built as the junction of two segments with different diameters, and afterward (c) we verify that the MD results for thermal rectification in telescopic NWs are very well reproduced by the heat equation with κ(T) of the segments from MD. Second, we apply the heat equation to predict the amount of thermal rectification in a variety of telescopic SiNWs with segments made from SiNWs where κ(T) has been experimentally measured, obtaining r values up to 50%. This methodology can be applied to predict the thermal rectification of arbitrary heterojunctions as long as the κ(T) data of the constituents are available.

18.
Nano Lett ; 15(1): 481-5, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25494683

RESUMEN

Quantized conductance in nanowires can be observed at low temperature in transport measurements; however, the observation of sub-bands at room temperature is challenging due to temperature broadening. So far, conduction band splitting at room temperature has not been observed in III-V nanowires mainly due to the small energetic separations between the sub-bands. We report on the measurement of conduction sub-bands at room temperature, in single InAs nanowires, using Kelvin probe force microscopy. This method does not rely on charge transport but rather on measurement of the nanowire Fermi level position as carriers are injected into a single nanowire transistor. As there is no charge transport, electron scattering is no longer an issue, allowing the observation of the sub-bands at room temperature. We measure the energy of the sub-bands in nanowires with two different diameters, and obtain excellent agreement with theoretical calculations based on an empirical tight-binding model.

19.
Nanotechnology ; 25(17): 175401, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24722065

RESUMEN

We study the dynamics of h-BN monolayers by first performing ab-initio calculations of the deformation potential energy and then solving numerically a Langevine-type equation to explore their use in nonlinear vibration energy harvesting devices. An applied compressive strain is used to drive the system into a nonlinear bistable regime, where quasi-harmonic vibrations are combined with low-frequency swings between the minima of a double-well potential. Due to its intrinsic piezoelectric response, the nonlinear mechanical harvester naturally provides an electrical power that is readily available or can be stored by simply contacting the monolayer at its ends. Engineering the induced nonlinearity, a 20 nm2 device is predicted to harvest an electrical power of up to 0.18 pW for a noisy vibration of 5 pN.

20.
Nanotechnology ; 25(46): 465703, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25355047

RESUMEN

New advances in single-atom manipulation are leading to the creation of atomic structures on H-passivated Si surfaces with functionalities important for the development of atomic and molecular based technologies. We perform total-energy and electron-transport calculations to reveal the properties and understand the features of atomic wires crafted by H removal from the surface. The presence of dopants radically change the wire properties. Our calculations show that dopants have a tendency to approach the dangling-bond wires, and in these conditions, transport is enhanced and spin selective. These results have important implications in the development of atomic-scale spintronics showing that boron, and to a lesser extent phosphorous, convert the wires in high-quality spin filters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA