Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(15): 2900-2917.e10, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39032490

RESUMEN

INTS11 and CPSF73 are metal-dependent endonucleases for Integrator and pre-mRNA 3'-end processing, respectively. Here, we show that the INTS11 binding partner BRAT1/CG7044, a factor important for neuronal fitness, stabilizes INTS11 in the cytoplasm and is required for Integrator function in the nucleus. Loss of BRAT1 in neural organoids leads to transcriptomic disruption and precocious expression of neurogenesis-driving transcription factors. The structures of the human INTS9-INTS11-BRAT1 and Drosophila dIntS11-CG7044 complexes reveal that the conserved C terminus of BRAT1/CG7044 is captured in the active site of INTS11, with a cysteine residue directly coordinating the metal ions. Inspired by these observations, we find that UBE3D is a binding partner for CPSF73, and UBE3D likely also uses a conserved cysteine residue to directly coordinate the active site metal ions. Our studies have revealed binding partners for INTS11 and CPSF73 that behave like cytoplasmic chaperones with a conserved impact on the nuclear functions of these enzymes.


Asunto(s)
Núcleo Celular , Citoplasma , Proteínas de Drosophila , Unión Proteica , Humanos , Animales , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Citoplasma/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Endonucleasas/metabolismo , Endonucleasas/genética , Células HEK293 , Neurogénesis/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Dominio Catalítico
2.
Mol Cell ; 80(2): 345-358.e9, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32966759

RESUMEN

Efficient release of promoter-proximally paused RNA Pol II into productive elongation is essential for gene expression. Recently, we reported that the Integrator complex can bind paused RNA Pol II and drive premature transcription termination, potently attenuating the activity of target genes. Premature termination requires RNA cleavage by the endonuclease subunit of Integrator, but the roles of other Integrator subunits in gene regulation have yet to be elucidated. Here we report that Integrator subunit 8 (IntS8) is critical for transcription repression and required for association with protein phosphatase 2A (PP2A). We find that Integrator-bound PP2A dephosphorylates the RNA Pol II C-terminal domain and Spt5, preventing the transition to productive elongation. Thus, blocking PP2A association with Integrator stimulates pause release and gene activity. These results reveal a second catalytic function associated with Integrator-mediated transcription termination and indicate that control of productive elongation involves active competition between transcriptional kinases and phosphatases.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteína Fosfatasa 2/metabolismo , Subunidades de Proteína/metabolismo , Factores de Transcripción/metabolismo , Terminación de la Transcripción Genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Proteínas de Drosophila/química , Drosophila melanogaster , Regulación de la Expresión Génica , Sitios Genéticos , Humanos , Fosforilación , Regiones Promotoras Genéticas , Subunidades de Proteína/química , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Transducción de Señal , Especificidad por Sustrato , Factores de Transcripción/química
3.
RNA ; 30(7): 824-838, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38575347

RESUMEN

Forkhead box P3 (FOXP3) is the master fate-determining transcription factor in regulatory T (Treg) cells and is essential for their development, function, and homeostasis. Mutations in FOXP3 cause immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, and aberrant expression of FOXP3 has been implicated in other diseases such as multiple sclerosis and cancer. We previously demonstrated that pre-mRNA splicing of FOXP3 RNAs is highly sensitive to levels of DExD-box polypeptide 39B (DDX39B), and here we investigate the mechanism of this sensitivity. FOXP3 introns have cytidine (C)-rich/uridine (U)-poor polypyrimidine (py) tracts that are responsible for their inefficient splicing and confer sensitivity to DDX39B. We show that there is a deficiency in the assembly of commitment complexes (CCs) on FOXP3 introns, which is consistent with the lower affinity of U2AF2 for C-rich/U-poor py tracts. Our data indicate an even stronger effect on the conversion of CCs to pre-spliceosomes. We propose that this is due to an altered conformation that U2AF2 adopts when it binds to C-rich/U-poor py tracts and that this conformation has a lower affinity for DDX39B. As a consequence, CCs assembled on FOXP3 introns are defective in recruiting DDX39B, and this leads to the inefficient assembly of pre-spliceosome complexes.


Asunto(s)
ARN Helicasas DEAD-box , Factores de Transcripción Forkhead , Intrones , Empalme del ARN , Empalmosomas , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Humanos , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Empalmosomas/metabolismo , Empalmosomas/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(28): e2220276120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37406091

RESUMEN

Epithelial-to-mesenchymal transition (EMT) underlies immunosuppression, drug resistance, and metastasis in epithelial malignancies. However, the way in which EMT orchestrates disparate biological processes remains unclear. Here, we identify an EMT-activated vesicular trafficking network that coordinates promigratory focal adhesion dynamics with an immunosuppressive secretory program in lung adenocarcinoma (LUAD). The EMT-activating transcription factor ZEB1 drives exocytotic vesicular trafficking by relieving Rab6A, Rab8A, and guanine nucleotide exchange factors from miR-148a-dependent silencing, thereby facilitating MMP14-dependent focal adhesion turnover in LUAD cells and autotaxin-mediated CD8+ T cell exhaustion, indicating that cell-intrinsic and extrinsic processes are linked through a microRNA that coordinates vesicular trafficking networks. Blockade of ZEB1-dependent secretion reactivates antitumor immunity and negates resistance to PD-L1 immune checkpoint blockade, an important clinical problem in LUAD. Thus, EMT activates exocytotic Rabs to drive a secretory program that promotes invasion and immunosuppression in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Humanos , Línea Celular Tumoral , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Neoplasias Pulmonares/genética , Adenocarcinoma del Pulmón/genética , MicroARNs/genética , Terapia de Inmunosupresión , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética
5.
Proc Natl Acad Sci U S A ; 119(12): e2114336119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35290121

RESUMEN

The aryl hydrocarbon receptor nuclear translocator (ARNT) is a transcription factor present in immune cells as a long and short isoform, referred to as isoforms 1 and 3, respectively. However, investigation into potential ARNT isoform­specific immune functions is lacking despite the well-established heterodimerization requirement of ARNT with, and for the activity of, the aryl hydrocarbon receptor (AhR), a critical mediator of immune homeostasis. Here, using global and targeted transcriptomics analyses, we show that the relative ARNT isoform 1:3 ratio in human T cell lymphoma cells dictates the amplitude and direction of AhR target gene regulation. Specifically, shifting the ARNT isoform 1:3 ratio lower by suppressing isoform 1 enhances, or higher by suppressing isoform 3 abrogates, AhR responsiveness to ligand activation through preprograming a cellular genetic background that directs explicit gene expression patterns. Moreover, the fluctuations in gene expression patterns that accompany a decrease or increase in the ARNT isoform 1:3 ratio are associated with inflammation or immunosuppression, respectively. Molecular studies identified the unique casein kinase 2 (CK2) phosphorylation site within isoform 1 as an essential parameter to the mechanism of ARNT isoform­specific regulation of AhR signaling. Notably, CK2-mediated phosphorylation of ARNT isoform 1 is dependent on ligand-induced AhR nuclear translocation and is required for optimal AhR target gene regulation. These observations reveal ARNT as a central modulator of AhR activity predicated on the status of the ARNT isoform ratio and suggest that ARNT-based therapies are a viable option for tuning the immune system to target immune disorders.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo , Neoplasias , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Humanos , Ligandos , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Linfocitos T/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(32): e2205690119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35881779

RESUMEN

The furin cleavage site (FCS), an unusual feature in the SARS-CoV-2 spike protein, has been spotlighted as a factor key to facilitating infection and pathogenesis by increasing spike processing. Similarly, the QTQTN motif directly upstream of the FCS is also an unusual feature for group 2B coronaviruses (CoVs). The QTQTN deletion has consistently been observed in in vitro cultured virus stocks and some clinical isolates. To determine whether the QTQTN motif is critical to SARS-CoV-2 replication and pathogenesis, we generated a mutant deleting the QTQTN motif (ΔQTQTN). Here, we report that the QTQTN deletion attenuates viral replication in respiratory cells in vitro and attenuates disease in vivo. The deletion results in a shortened, more rigid peptide loop that contains the FCS and is less accessible to host proteases, such as TMPRSS2. Thus, the deletion reduced the efficiency of spike processing and attenuates SARS-CoV-2 infection. Importantly, the QTQTN motif also contains residues that are glycosylated, and disruption of its glycosylation also attenuates virus replication in a TMPRSS2-dependent manner. Together, our results reveal that three aspects of the S1/S2 cleavage site-the FCS, loop length, and glycosylation-are required for efficient SARS-CoV-2 replication and pathogenesis.


Asunto(s)
COVID-19 , Furina , Proteolisis , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Secuencias de Aminoácidos/genética , Animales , COVID-19/virología , Chlorocebus aethiops , Furina/química , Humanos , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Eliminación de Secuencia , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero , Replicación Viral/genética
7.
Proteomics ; : e2400036, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004851

RESUMEN

Liquid chromatography-mass spectrometry (LC-MS) intact mass analysis and LC-MS/MS peptide mapping are decisional assays for developing biological drugs and other commercial protein products. Certain PTM types, such as truncation and oxidation, increase the difficulty of precise proteoform characterization owing to inherent limitations in peptide and intact protein analyses. Top-down MS (TDMS) can resolve this ambiguity via fragmentation of specific proteoforms. We leveraged the strengths of flow-programmed (fp) denaturing online buffer exchange (dOBE) chromatography, including robust automation, relatively high ESI sensitivity, and long MS/MS window time, to support a TDMS platform for industrial protein characterization. We tested data-dependent (DDA) and targeted strategies using 14 different MS/MS scan types featuring combinations of collisional- and electron-based fragmentation as well as proton transfer charge reduction. This large, focused dataset was processed using a new software platform, named TDAcquireX, that improves proteoform characterization through TDMS data aggregation. A DDA-based workflow provided objective identification of αLac truncation proteoforms with a two-termini clipping search. A targeted TDMS workflow facilitated the characterization of αLac oxidation positional isomers. This strategy relied on using sliding window-based fragment ion deconvolution to generate composite proteoform spectral match (cPrSM) results amenable to fragment noise filtering, which is a fundamental enhancement relevant to TDMS applications generally.

8.
J Biol Chem ; 299(4): 104586, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36889589

RESUMEN

MDGAs (MAM domain-containing glycosylphosphatidylinositol anchors) are synaptic cell surface molecules that regulate the formation of trans-synaptic bridges between neurexins (NRXNs) and neuroligins (NLGNs), which promote synaptic development. Mutations in MDGAs are implicated in various neuropsychiatric diseases. MDGAs bind NLGNs in cis on the postsynaptic membrane and physically block NLGNs from binding to NRXNs. In crystal structures, the six immunoglobulin (Ig) and single fibronectin III domains of MDGA1 reveal a striking compact, triangular shape, both alone and in complex with NLGNs. Whether this unusual domain arrangement is required for biological function or other arrangements occur with different functional outcomes is unknown. Here, we show that WT MDGA1 can adopt both compact and extended 3D conformations that bind NLGN2. Designer mutants targeting strategic molecular elbows in MDGA1 alter the distribution of 3D conformations while leaving the binding affinity between soluble ectodomains of MDGA1 and NLGN2 intact. In contrast, in a cellular context, these mutants result in unique combinations of functional consequences, including altered binding to NLGN2, decreased capacity to conceal NLGN2 from NRXN1ß, and/or suppressed NLGN2-mediated inhibitory presynaptic differentiation, despite the mutations being located far from the MDGA1-NLGN2 interaction site. Thus, the 3D conformation of the entire MDGA1 ectodomain appears critical for its function, and its NLGN-binding site on Ig1-Ig2 is not independent of the rest of the molecule. As a result, global 3D conformational changes to the MDGA1 ectodomain via strategic elbows may form a molecular mechanism to regulate MDGA1 action within the synaptic cleft.


Asunto(s)
Moléculas de Adhesión de Célula Nerviosa , Sinapsis , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Sinapsis/metabolismo , Sitios de Unión , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Conformación Molecular , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo
9.
Nucleic Acids Res ; 50(9): 5313-5334, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35544276

RESUMEN

Alternative splicing is critical for development; however, its role in the specification of the three embryonic germ layers is poorly understood. By performing RNA-Seq on human embryonic stem cells (hESCs) and derived definitive endoderm, cardiac mesoderm, and ectoderm cell lineages, we detect distinct alternative splicing programs associated with each lineage. The most prominent splicing program differences are observed between definitive endoderm and cardiac mesoderm. Integrative multi-omics analyses link each program with lineage-enriched RNA binding protein regulators, and further suggest a widespread role for Quaking (QKI) in the specification of cardiac mesoderm. Remarkably, knockout of QKI disrupts the cardiac mesoderm-associated alternative splicing program and formation of myocytes. These changes arise in part through reduced expression of BIN1 splice variants linked to cardiac development. Mechanistically, we find that QKI represses inclusion of exon 7 in BIN1 pre-mRNA via an exonic ACUAA motif, and this is concomitant with intron removal and cleavage from chromatin. Collectively, our results uncover alternative splicing programs associated with the three germ lineages and demonstrate an important role for QKI in the formation of cardiac mesoderm.


Asunto(s)
Empalme Alternativo , Linaje de la Célula , Estratos Germinativos , Proteínas de Unión al ARN/metabolismo , Diferenciación Celular , Endodermo , Corazón , Humanos , Mesodermo
10.
Nucleic Acids Res ; 50(16): 9548-9567, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36039764

RESUMEN

The AP1 transcription factor ΔFOSB, a splice variant of FOSB, accumulates in the brain in response to chronic insults such as exposure to drugs of abuse, depression, Alzheimer's disease and tardive dyskinesias, and mediates subsequent long-term neuroadaptations. ΔFOSB forms heterodimers with other AP1 transcription factors, e.g. JUND, that bind DNA under control of a putative cysteine-based redox switch. Here, we reveal the structural basis of the redox switch by determining a key missing crystal structure in a trio, the ΔFOSB/JUND bZIP domains in the reduced, DNA-free form. Screening a cysteine-focused library containing 3200 thiol-reactive compounds, we identify specific compounds that target the redox switch, validate their activity biochemically and in cell-based assays, and show that they are well tolerated in different cell lines despite their general potential to bind to cysteines covalently. A crystal structure of the ΔFOSB/JUND bZIP domains in complex with a redox-switch-targeting compound reveals a deep compound-binding pocket near the DNA-binding site. We demonstrate that ΔFOSB, and potentially other, related AP1 transcription factors, can be targeted specifically and discriminately by exploiting unique structural features such as the redox switch and the binding partner to modulate biological function despite these proteins previously being thought to be undruggable.


Asunto(s)
Cisteína , Proteínas Proto-Oncogénicas c-fos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Cisteína/genética , Cisteína/metabolismo , Regulación de la Expresión Génica , ADN/genética , ADN/metabolismo , Oxidación-Reducción , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
11.
Acta Neuropathol ; 145(3): 303-324, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36538112

RESUMEN

Individuals at distinct stages of Alzheimer's disease (AD) show abnormal electroencephalographic activity, which has been linked to network hyperexcitability and cognitive decline. However, whether pro-excitatory changes at the synaptic level are observed in brain areas affected early in AD, and if they are emergent in MCI, is not clearly known. Equally important, it is not known whether global synaptic E/I imbalances correlate with the severity of cognitive impairment in the continuum of AD. Measuring the amplitude of ion currents of human excitatory and inhibitory synaptic receptors microtransplanted from the hippocampus and temporal cortex of cognitively normal, mildly cognitively impaired and AD individuals into surrogate cells, we found regional differences in pro-excitatory shifts of the excitatory to inhibitory (E/I) current ratio that correlates positively with toxic proteins and degree of pathology, and impinges negatively on cognitive performance scores. Using these data with electrophysiologically anchored analysis of the synapto-proteome in the same individuals, we identified a group of proteins sustaining synaptic function and those related to synaptic toxicity. We also found an uncoupling between the function and expression of proteins for GABAergic signaling in the temporal cortex underlying larger E/I and worse cognitive performance. Further analysis of transcriptomic and in situ hybridization datasets from an independent cohort across the continuum of AD confirm regional differences in pro-excitatory shifts of the E/I balance that correlate negatively with the most recent calibrated composite scores for memory, executive function, language and visuospatial abilities, as well as overall cognitive performance. These findings indicate that early shifts of E/I balance may contribute to loss of cognitive capabilities in the continuum of AD clinical syndrome.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/patología , Encéfalo/patología , Hipocampo/patología , Cognición
12.
J Nutr ; 153(12): 3397-3405, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37898335

RESUMEN

BACKGROUND: Regulation of mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in aging and nutrition. For example, caloric restriction reduces mTORC1 signaling and extends lifespan, whereas nutrient abundance and obesity increase mTORC1 signaling and reduce lifespan. Skeletal muscle-specific knockout (KO) of DEP domain-containing 5 protein (DEPDC5) results in constitutively active mTORC1 signaling, muscle hypertrophy and an increase in mitochondrial respiratory capacity. The metabolic profile of skeletal muscle, in the setting of hyperactive mTORC1 signaling, is not well known. OBJECTIVES: To determine the metabolomic and lipidomic signature in skeletal muscle from female and male wild-type (WT) and DEPDC5 KO mice. METHODS: Tibialis anterior (TA) muscles from WT and transgenic (conditional skeletal muscle-specific DEPDC5 KO) were obtained from female and male adult mice. Polar metabolites and lipids were extracted using a Bligh-Dyer extraction from 5 samples per group and identified and quantified by LC-MS/MS. Resulting analyte peak areas were analyzed with t-test, analysis of variance, and Volcano plots for group comparisons (e.g., WT compared with KO) and multivariate statistical analysis for genotype and sex comparisons. RESULTS: A total of 162 polar metabolites (organic acids, amino acids, and amines and acyl carnitines) and 1141 lipid metabolites were detected in TA samples by LC-MS/MS. Few polar metabolites showed significant differences in KO muscles compared with WT within the same sex group. P-aminobenzoic acid, ß-alanine, and dopamine were significantly higher in KO male muscle whereas erythrose-4-phosphate and oxoglutaric acid were significantly reduced in KO females. The lipidomic profile of the KO groups revealed an increase of muscle phospholipids and reduced triacylglycerol and diacylglycerol compared with the WT groups. CONCLUSIONS: Sex differences were detected in polar metabolome and lipids were dependent on genotype. The metabolomic profile of mice with hyperactive skeletal muscle mTORC1 is consistent with an upregulation of mitochondrial function and amino acid utilization for protein synthesis.


Asunto(s)
Lipidómica , Espectrometría de Masas en Tándem , Femenino , Masculino , Ratones , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Cromatografía Liquida , Músculo Esquelético/metabolismo , Ratones Noqueados , Lípidos
13.
Proc Natl Acad Sci U S A ; 117(30): 17992-18001, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32669438

RESUMEN

Dengue virus (DENV) was designated as a top 10 public health threat by the World Health Organization in 2019. No clinically approved anti-DENV drug is currently available. Here we report the high-resolution cocrystal structure (1.5 Å) of the DENV-2 capsid protein in complex with an inhibitor that potently suppresses DENV-2 but not other DENV serotypes. The inhibitor induces a "kissing" interaction between two capsid dimers. The inhibitor-bound capsid tetramers are assembled inside virions, resulting in defective uncoating of nucleocapsid when infecting new cells. Resistant DENV-2 emerges through one mutation that abolishes hydrogen bonds in the capsid structure, leading to a loss of compound binding. Structure-based analysis has defined the amino acids responsible for the inhibitor's inefficacy against other DENV serotypes. The results have uncovered an antiviral mechanism through inhibitor-induced tetramerization of the viral capsid and provided essential structural and functional knowledge for rational design of panserotype DENV capsid inhibitors.


Asunto(s)
Antivirales/química , Proteínas de la Cápside/química , Virus del Dengue , Modelos Moleculares , Conformación Proteica , Secuencia de Aminoácidos , Antivirales/farmacología , Sitios de Unión , Proteínas de la Cápside/genética , Virus del Dengue/efectos de los fármacos , Mutación , Nucleocápside/química , Nucleocápside/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad
14.
J Biol Chem ; 296: 100309, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33482196

RESUMEN

Mitochondrial DNA is located in organelle that house essential metabolic reactions and contains high reactive oxygen species. Therefore, mitochondrial DNA suffers more oxidative damage than its nuclear counterpart. Formation of a repair enzyme complex is beneficial to DNA repair. Recent studies have shown that mitochondrial DNA polymerase (Pol γ) and poly(ADP-ribose) polymerase 1 (PARP1) were found in the same complex along with other mitochondrial DNA repair enzymes, and mitochondrial PARP1 level is correlated with mtDNA integrity. However, the molecular basis for the functional connection between Pol γ and PARP1 has not yet been elucidated because cellular functions of PARP1 in DNA repair are intertwined with metabolism via NAD+ (nicotinamide adenosine dinucleotide), the substrate of PARP1, and a metabolic cofactor. To dissect the direct effect of PARP1 on mtDNA from the secondary perturbation of metabolism, we report here biochemical studies that recapitulated Pol γ PARylation observed in cells and showed that PARP1 regulates Pol γ activity during DNA repair in a metabolic cofactor NAD+ (nicotinamide adenosine dinucleotide)-dependent manner. In the absence of NAD+, PARP1 completely inhibits Pol γ, while increasing NAD+ levels to a physiological concentration that enables Pol γ to resume maximum repair activity. Because cellular NAD+ levels are linked to metabolism and to ATP production via oxidative phosphorylation, our results suggest that mtDNA damage repair is coupled to cellular metabolic state and the integrity of the respiratory chain.


Asunto(s)
ADN Polimerasa gamma/genética , ADN Mitocondrial/genética , NAD/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Humanos , NAD/metabolismo , Estrés Oxidativo/genética , Poli ADP Ribosilación/genética , Conformación Proteica , Mapas de Interacción de Proteínas/genética , Procesamiento Proteico-Postraduccional/genética , Especies Reactivas de Oxígeno/metabolismo
15.
Anal Chem ; 94(9): 3930-3938, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35189062

RESUMEN

Complete LC-MS-based protein primary sequence characterization requires measurement of intact protein profiles under denaturing and/or reducing conditions. To address issues of protein overcharging of unstructured proteins under acidic, denaturing conditions and sample heterogeneity (macro- and micro-scales) which often confound denaturing intact mass analysis of a wide variety of protein samples, we propose the use of broadband isolation of entire charge state distributions of intact proteins followed by ion-ion proton transfer charge reduction, which we have termed "full scan PTCR" (fsPTCR). Using rapid denaturing size exclusion chromatography coupled to fsPTCR-Orbitrap MS and time-resolved deconvolution data analysis, we demonstrate a strategy for method optimization, leading to significant analytical advantages over conventional MS1. Denaturing analysis of the flexible bacterial translation initiation factor 2 (91 kDa) using fsPTCR reduced overcharging and showed an 11-fold gain in S/N compared to conventional MS1. Analysis by fsPTCR-MS of the microheterogeneous glycoprotein fetuin revealed twice as many proteoforms as MS1 (112 vs 56). In a macroheterogeneous mixture of proteins ranging from 14 to 148 kDa, fsPTCR provided more than 10-fold increased sensitivity and quantitative accuracy for diluted bovine serum albumin (66 kDa). Finally, our analysis shows that collisional gas pressure is a key parameter which can be utilized during fsPTCR to retain or remove larger proteins from acquired spectra.


Asunto(s)
Protones , Albúmina Sérica Bovina , Secuencia de Aminoácidos , Cromatografía Liquida/métodos , Espectrometría de Masas , Albúmina Sérica Bovina/química
16.
Proc Natl Acad Sci U S A ; 115(5): E848-E855, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29348209

RESUMEN

SpnF is the first monofunctional Diels-Alder/[6+4]-ase that catalyzes a reaction leading to both Diels-Alder and [6+4] adducts through a single transition state. The environment-perturbed transition-state sampling method has been developed to calculate free energies, kinetic isotope effects, and quasi-classical reaction trajectories of enzyme-catalyzed reactions and the uncatalyzed reaction in water. Energetics calculated in this way reproduce the experiment and show that the normal Diels-Alder transition state is stabilized by H bonds with water molecules, while the ambimodal transition state is favored in the enzyme SpnF by both intramolecular hydrogen bonding and hydrophobic binding. Molecular dynamics simulations show that trajectories passing through the ambimodal transition state bifurcate to the [6+4] adduct and the Diels-Alder adduct with a ratio of 1:1 in the gas phase, 1:1.6 in water, and 1:11 in the enzyme. This example shows how an enzyme acts on a vibrational time scale to steer post-transition state trajectories toward the Diels-Alder adduct.


Asunto(s)
Proteínas Bacterianas/metabolismo , Macrólidos/metabolismo , Agua/química , Catálisis , Reacción de Cicloadición , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Químicos , Conformación Molecular , Simulación de Dinámica Molecular , Teoría Cuántica , Saccharopolyspora/enzimología , Programas Informáticos
17.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299332

RESUMEN

Exposure of rodents to <20 cGy Space Radiation (SR) impairs performance in several hippocampus-dependent cognitive tasks, including spatial memory. However, there is considerable inter-individual susceptibility to develop SR-induced spatial memory impairment. In this study, a robust label-free mass spectrometry (MS)-based unbiased proteomic profiling approach was used to characterize the composition of the hippocampal proteome in adult male Wistar rats exposed to 15 cGy of 1 GeV/n 48Ti and their sham counterparts. Unique protein signatures were identified in the hippocampal proteome of: (1) sham rats, (2) Ti-exposed rats, (3) Ti-exposed rats that had sham-like spatial memory performance, and (4) Ti-exposed rats that impaired spatial memory performance. Approximately 14% (159) of the proteins detected in hippocampal proteome of sham rats were not detected in the Ti-exposed rats. We explored the possibility that the loss of the Sham-only proteins may arise as a result of SR-induced changes in protein homeostasis. SR-exposure was associated with a switch towards increased pro-ubiquitination proteins from that seen in Sham. These data suggest that the role of the ubiquitin-proteome system as a determinant of SR-induced neurocognitive deficits needs to be more thoroughly investigated.


Asunto(s)
Radiación Cósmica , Hipocampo/efectos de la radiación , Proteoma/metabolismo , Ubiquitina/metabolismo , Animales , Cognición/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Medio Ambiente Extraterrestre , Hipocampo/metabolismo , Masculino , Proteómica/métodos , Ratas , Ratas Wistar , Memoria Espacial/efectos de la radiación
18.
J Virol ; 93(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31462558

RESUMEN

Enteric viruses exploit bacterial components, including lipopolysaccharides (LPS) and peptidoglycan (PG), to facilitate infection in humans. Because of their origin in the bat enteric system, we wondered if severe acute respiratory syndrome coronavirus (SARS-CoV) or Middle East respiratory syndrome CoV (MERS-CoV) also use bacterial components to modulate infectivity. To test this question, we incubated CoVs with LPS and PG and evaluated infectivity, finding no change following LPS treatment. However, PG from Bacillus subtilis reduced infection >10,000-fold, while PG from other bacterial species failed to recapitulate this. Treatment with an alcohol solvent transferred inhibitory activity to the wash, and mass spectrometry revealed surfactin, a cyclic lipopeptide antibiotic, as the inhibitory compound. This antibiotic had robust dose- and temperature-dependent inhibition of CoV infectivity. Mechanistic studies indicated that surfactin disrupts CoV virion integrity, and surfactin treatment of the virus inoculum ablated infection in vivo Finally, similar cyclic lipopeptides had no effect on CoV infectivity, and the inhibitory effect of surfactin extended broadly to enveloped viruses, including influenza, Ebola, Zika, Nipah, chikungunya, Una, Mayaro, Dugbe, and Crimean-Congo hemorrhagic fever viruses. Overall, our results indicate that peptidoglycan-associated surfactin has broad viricidal activity and suggest that bacteria by-products may negatively modulate virus infection.IMPORTANCE In this article, we consider a role for bacteria in shaping coronavirus infection. Taking cues from studies of enteric viruses, we initially investigated how bacterial surface components might improve CoV infection. Instead, we found that peptidoglycan-associated surfactin is a potent viricidal compound that disrupts virion integrity with broad activity against enveloped viruses. Our results indicate that interactions with commensal bacterial may improve or disrupt viral infections, highlighting the importance of understanding these microbial interactions and their implications for viral pathogenesis and treatment.


Asunto(s)
Lipopéptidos/farmacología , Péptidos Cíclicos/farmacología , Peptidoglicano/metabolismo , Virus ARN/efectos de los fármacos , Animales , Línea Celular , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Flaviviridae/efectos de los fármacos , Lipopéptidos/inmunología , Lipopéptidos/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Péptidos Cíclicos/inmunología , Péptidos Cíclicos/metabolismo , Peptidoglicano/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Síndrome Respiratorio Agudo Grave/virología , Células Vero , Virosis/metabolismo
19.
Proc Natl Acad Sci U S A ; 114(39): 10408-10413, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28874588

RESUMEN

The Diels-Alder reaction is one of the most common methods to chemically synthesize a six-membered carbocycle. While it has long been speculated that the cyclohexene moiety found in many secondary metabolites is also introduced via similar chemistry, the enzyme SpnF involved in the biosynthesis of the insecticide spinosyn A in Saccharopolyspora spinosa is the first enzyme for which catalysis of an intramolecular [Formula: see text]-cycloaddition has been experimentally verified as its only known function. Since its discovery, a number of additional standalone [Formula: see text]-cyclases have been reported as potential Diels-Alderases; however, whether their catalytic cycles involve a concerted or stepwise cyclization mechanism has not been addressed experimentally. Here, we report direct experimental interrogation of the reaction coordinate for the [Formula: see text]-carbocyclase SpnF via the measurement of [Formula: see text]-secondary deuterium kinetic isotope effects (KIEs) at all sites of [Formula: see text] rehybridization for both the nonenzymatic and enzyme-catalyzed cyclization of the SpnF substrate. The measured KIEs for the nonenzymatic reaction are consistent with previous computational results implicating an intermediary state between formation of the first and second carbon-carbon bonds. The KIEs measured for the enzymatic reaction suggest a similar mechanism of cyclization within the enzyme active site; however, there is evidence that conformational restriction of the substrate may play a role in catalysis.


Asunto(s)
Reacción de Cicloadición , Macrólidos/metabolismo , Metiltransferasas/metabolismo , Dominio Catalítico/fisiología , Saccharopolyspora/enzimología , Saccharopolyspora/metabolismo
20.
Plant J ; 94(1): 131-145, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29385647

RESUMEN

The oligosaccharyltransferase (OT) complex catalyzes N-glycosylation of nascent secretory polypeptides in the lumen of the endoplasmic reticulum. Despite their importance, little is known about the structure and function of plant OT complexes, mainly due to lack of efficient recombinant protein production systems suitable for studies on large plant protein complexes. Here, we purified Arabidopsis OT complexes using the tandem affinity-tagged OT subunit STAUROSPORINE AND TEMPERATURE SENSITIVE3a (STT3a) expressed by an Arabidopsis protein super-expression platform. Mass-spectrometry analysis of the purified complexes identified three essential OT subunits, OLIGOSACCHARYLTRANSFERASE1 (OST1), HAPLESS6 (HAP6), DEFECTIVE GLYCOSYLATION1 (DGL1), and a number of ribosomal subunits. Transmission-electron microscopy showed that STT3a becomes incorporated into OT-ribosome super-complexes formed in vivo, demonstrating that this expression/purification platform is suitable for analysis of large protein complexes. Pairwise in planta interaction analyses of individual OT subunits demonstrated that all subunits identified in animal OT complexes are conserved in Arabidopsis and physically interact with STT3a. Genetic analysis of newly established OT subunit mutants for OST1 and DEFENDER AGAINST APOTOTIC DEATH (DAD) family genes revealed that OST1 and DAD1/2 subunits are essential for the plant life cycle. However, mutations in these individual isoforms produced much milder growth/underglycosylation phenotypes than previously reported for mutations in DGL1, OST3/6 and STT3a.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Regulación de la Expresión Génica de las Plantas , Hexosiltransferasas/genética , Hexosiltransferasas/aislamiento & purificación , Espectrometría de Masas , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Microscopía Electrónica de Transmisión , Ribosomas/enzimología , Ribosomas/metabolismo , Purificación por Afinidad en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA