Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(30): 9117-9128, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39037750

RESUMEN

Two-dimensional (2D) materials have garnered significant attention due to their exceptional properties requisite for next-generation electronics, including ultrahigh carrier mobility, superior mechanical flexibility, and unusual optical characteristics. Despite their great potential, one of the major technical difficulties toward lab-to-fab transition exists in the seamless integration of 2D materials with classic material systems, typically composed of three-dimensional (3D) materials. Owing to the self-passivated nature of 2D surfaces, it is particularly challenging to achieve well-defined interfaces when forming 3D materials on 2D materials (3D-on-2D) heterostructures. Here, we comprehensively review recent progress in 3D-on-2D incorporation strategies, ranging from direct-growth- to layer-transfer-based approaches and from non-epitaxial to epitaxial integration methods. Their technological advances and obstacles are rigorously discussed to explore optimal, yet viable, integration strategies of 3D-on-2D heterostructures. We conclude with an outlook on mixed-dimensional integration processes, identifying key challenges in state-of-the-art technology and suggesting potential opportunities for future innovation.

2.
ACS Appl Mater Interfaces ; 16(32): 42426-42434, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39099087

RESUMEN

Micro light-emitting diodes (micro-LEDs) are pivotal in next-generation display technologies, driven by the need for high pixel density. This study introduces a novel methodology utilizing wide sapphire nanomembranes (W-SNM) as a dual-purpose template for high-quality epitaxial growth and the mechanical lift-off of individual micro-LEDs. Micro-LEDs grow individually on W-SNM, obviating the chip singulation process. By employing mechanical fracturing of the thin W-SNM, our method facilitates the transfer of micro-LEDs without the conventional laser lift-off (LLO) process. Previously introduced sapphire nanomembranes (SNM) have shown promise in enhancing epitaxial layer quality; however, they encountered challenges in managing micro-LED size variation and achieving efficient mechanical transfer. Here, we apply simple yet effective adjustments to the SNM structure, specifically, its elevation and widening. This strategic modification allows micro-LEDs to endure applied forces without incurring cracks or defects, ensuring that only the targeted W-SNM are selectively fractured. The mechanically transferred vertical 15 × 15 µm2 micro-LED device operates at an optimal turn-on voltage of 3.3 V. Finite element simulations validate the mechanical strain distribution between the W-SNM and GaN when pressure is applied, confirming the efficacy of our design approach. This pioneering methodology offers a streamlined, efficient pathway for the production and mechanical transfer of micro-LEDs, presenting new avenues for their integration into next-generation, high-performance displays.

3.
ACS Sens ; 9(10): 5363-5373, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39315860

RESUMEN

Hydrogen (H2) is a promising alternative energy source for Net-zero, but the risk of explosion requires accurate and rapid detection systems. As the use of H2 energy expands, sensors require high performance in a variety of properties. Palladium (Pd) is an attractive material for H2 detection due to its high H2 affinity and catalytic properties. However, poor stability caused by volume changes and reliability due to environmental sensitivity remain obstacles. This study proposes a micropatterned thin film of PdAu with optimized composition (Pd0.62Au0.38) as a chemoresistive sensor to overcome these issues. At room temperature, the sensor has a wide detection range of 0.0002% to 5% and a fast response time of 9.5 s. Significantly, the sensor exhibits excellent durability for repeated operation (>35 h) in 5% H2 and resistance to humidity and carbon monoxide. We also report a negative resistivity change in PdAu, which is opposite to that of Pd. Density functional theory (DFT) calculations were performed to investigate the resistance change. DFT analysis revealed that H2 penetrates specific interstitial sites, causing partial lattice compression. The lattice compression causes a decrease in electrical resistance. This work is expected to contribute to the development of high-performance H2 sensors using Pd-based alloys.


Asunto(s)
Teoría Funcional de la Densidad , Oro , Hidrógeno , Paladio , Hidrógeno/química , Paladio/química , Oro/química , Cobre/química , Monóxido de Carbono/análisis , Monóxido de Carbono/química , Técnicas Electroquímicas/métodos
4.
ACS Nano ; 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39471046

RESUMEN

Remote epitaxy is taking center stage in creating freestanding complex oxide thin films with high crystallinity that could serve as an ideal building block for stacking artificial heterostructures with distinctive functionalities. However, there exist technical challenges, particularly in the remote epitaxy of perovskite oxides associated with their harsh growth environments, making the graphene interlayer difficult to survive. Transferred graphene, typically used for creating a remote epitaxy template, poses limitations in ensuring the yield of perovskite films, especially when pulsed laser deposition (PLD) growth is carried out, since graphene degradation can be easily observed. Here, we employ spectroscopic ellipsometry to determine the critical factors that damage the integrity of graphene during PLD by tracking the change in optical properties of graphene in situ. To mitigate the issues observed in the PLD process, we propose an alternative growth strategy based on molecular beam epitaxy to produce single-crystalline perovskite membranes.

5.
Nat Commun ; 15(1): 8257, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333490

RESUMEN

Spatiotemporal control of full freedoms of polarized light emission is crucial in multiplexed optical computing, encryption and communication. Although recent advancements have been made in active emission or passive conversion of polarized light through solution-processed nanomaterials or metasurfaces, these design paths usually encounter limitations, such as small polarization degrees, low light utilization efficiency, limited polarization states, and lack of spatiotemporal control. Here, we addressed these challenges by integrating the spatiotemporal modulation of the LED device, the precise control and efficient polarization emission through nanomaterial assembly, and the programmable patterning/positioning using 3D printing. We achieved an extremely high degree of polarization for both linearly and circularly polarized emission from ultrathin inorganic nanowires and quantum nanorods thanks to the shear-force-induced alignment effect during the protruding of printing filaments. Real-time polarization modulation covering the entire Poincaré sphere can be conveniently obtained through the programming of the on-off state of each LED pixel. Further, the output polarization states can be encoded by an ordered chiral plasmonic film. Our device provides an excellent platform for multiplexing spatiotemporal polarization information, enabling visible light communication with an exceptionally elevated level of physical layer security and multifunctional encrypted displays that can encode both 2D and 3D information.

6.
Nanomicro Lett ; 16(1): 261, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39112731

RESUMEN

Micro-light-emitting diodes (µLEDs) have gained significant interest as an activation source for gas sensors owing to their advantages, including room temperature operation and low power consumption. However, despite these benefits, challenges still exist such as a limited range of detectable gases and slow response. In this study, we present a blue µLED-integrated light-activated gas sensor array based on SnO2 nanoparticles (NPs) that exhibit excellent sensitivity, tunable selectivity, and rapid detection with micro-watt level power consumption. The optimal power for µLED is observed at the highest gas response, supported by finite-difference time-domain simulation. Additionally, we first report the visible light-activated selective detection of reducing gases using noble metal-decorated SnO2 NPs. The noble metals induce catalytic interaction with reducing gases, clearly distinguishing NH3, H2, and C2H5OH. Real-time gas monitoring based on a fully hardware-implemented light-activated sensing array was demonstrated, opening up new avenues for advancements in light-activated electronic nose technologies.

7.
Adv Mater ; 35(43): e2204947, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35950613

RESUMEN

The implementation of high-efficiency and high-resolution displays has been the focus of considerable research interest. Recently, micro light-emitting diodes (micro-LEDs), which are inorganic light-emitting diodes of size <100 µm2 , have emerged as a promising display technology owing to their superior features and advantages over other displays like liquid crystal displays and organic light-emitting diodes. Although many companies have introduced micro-LED displays since 2012, obstacles to mass production still exist. Three major challenges, i.e., low quantum efficiency, time-consuming transfer, and complex color conversion, have been overcome with technological breakthroughs to realize cost-effective micro-LED displays. In the review, methods for improving the degraded quantum efficiency of GaN-based micro-LEDs induced by the size effect are examined, including wet chemical treatment, passivation layer adoption, LED structure design, and growing LEDs in self-passivated structures. Novel transfer technologies, including pick-up transfer and self-assembly methods, for developing large-area micro-LED displays with high yield and reliability are discussed in depth. Quantum dots as color conversion materials for high color purity, and deposition methods such as electrohydrodynamic jet printing or contact printing on micro-LEDs are also addressed. This review presents current status and critical challenges of micro-LED technology and promising technical breakthroughs for commercialization of high-performance displays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA