Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Plant J ; 107(1): 256-267, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33899980

RESUMEN

Mutations in the eukaryotic translation initiation factors eIF4E and eIF(iso)4E confer potyvirus resistance in a range of plant hosts. This supports the notion that, in addition to their role in translation of cellular mRNAs, eIF4E isoforms are also essential for the potyvirus cycle. CERES is a plant eIF4E- and eIF(iso)4E-binding protein that, through its binding to the eIF4Es, modulates translation initiation; however, its possible role in potyvirus resistance is unknown. In this article, we analyse if the ectopic expression of AtCERES is able to interfere with turnip mosaic virus replication in plants. Our results demonstrate that, during infection, the ectopic expression of CERES in Nicotiana benthamiana promotes the development of a mosaic phenotype when it is accumulated to moderate levels, but induces veinal necrosis when it is accumulated to higher levels. This necrotic process resembles a hypersensitive response (HR)-like response that occurs with different HR hallmarks. Remarkably, Arabidopsis plants inoculated with a virus clone that promotes high expression of CERES do not show signs of infection. These final phenotypical outcomes are independent of the capacity of CERES to bind to eIF4E. All these data suggest that CERES, most likely due to its leucine-rich repeat nature, could act as a resistance protein, able to promote a range of different defence responses when it is highly overexpressed from viral constructs.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/virología , Factores Eucarióticos de Iniciación/genética , Nicotiana/genética , Nicotiana/virología , Enfermedades de las Plantas/virología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Necrosis , Fenotipo , Hojas de la Planta/virología , Plantas Modificadas Genéticamente , Potyvirus/patogenicidad , Potyvirus/fisiología , Isoformas de Proteínas/metabolismo , Replicación Viral
2.
Mol Plant Microbe Interact ; 28(12): 1304-15, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26646245

RESUMEN

Turnip mosaic virus (TuMV) infections affect many Arabidopsis developmental traits. This paper analyzes, at different levels, the development-related differential alterations induced by different strains of TuMV, represented by isolates UK 1 and JPN 1. The genomic sequence of JPN 1 TuMV isolate revealed highest divergence in the P1 and P3 viral cistrons, upon comparison with the UK 1 sequence. Infectious viral chimeras covering the whole viral genome uncovered the P3 cistron as a major viral determinant of development alterations, excluding the involvement of the PIPO open reading frame. However, constitutive transgenic expression of P3 in Arabidopsis did not induce developmental alterations nor modulate the strong effects induced by the transgenic RNA silencing suppressor HC-Pro from either strain. This highlights the importance of studying viral determinants within the context of actual viral infections. Transcriptomic and interactomic analyses at different stages of plant development revealed large differences in the number of genes affected by the different infections at medium infection times but no significant differences at very early times. Biological functions affected by UK 1 (the most severe strain) included mainly stress response and transport. Most cellular components affected cell-wall transport or metabolism. Hubs in the interactome were affected upon infection.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/virología , Virus del Mosaico/fisiología , Genoma Viral , Virus del Mosaico/genética , Plantas Modificadas Genéticamente , Transcriptoma , Proteínas no Estructurales Virales/genética
3.
Int J Biol Macromol ; 254(Pt 2): 127798, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37924902

RESUMEN

An all-atom Molecular Dynamics (MD) study was applied to three viral nanoparticles (VLPs) of Turnip mosaic virus (TuMV), a potyvirus: the particles genetically functionalized with two peptides, VIP (human vasoactive intestinal peptide) and VEGFR (peptide derived from the human receptor 3 of the vascular endothelial growth factor), and the non-functionalized VLP. Previous experimental results showed that VIP-VLP was the only construct of the three that was not viable. VLPs subjected to our MD study were modeled by four complete turns of the particle involving 35 subunits of the coat protein (CP). The MD simulations showed differences in structures and interaction energies associated to the crucial contribution of the disordered N-terminal arms of CP to the global stability of the particle. These differences suggested an overall stability greater in VEGFR-VLP and smaller in VIP-VLP as compared to the unfunctionalized VLP. Our novel MD study of potyviral VLPs revealed essential clues about structure and interactions of these assembled protein particles and suggests that the computational prediction of the viability of VLPs can be a valuable contribution in the field of viral nanobiotechnology.


Asunto(s)
Potyvirus , Factor A de Crecimiento Endotelial Vascular , Humanos , Péptidos
4.
Mol Plant Microbe Interact ; 26(12): 1486-98, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23945002

RESUMEN

Losses produced by virus diseases depend mostly on symptom severity. Turnip mosaic virus (TuMV) is one of the most damaging and widespread potyvirus infecting members of the family Brassicaceae, including Arabidopsis thaliana. We used JPN1 and UK1 TuMV strains to characterize viral infections regarding symptom development, senescence progression, antioxidant response, reactive oxygen species (ROS) accumulation, and transcriptional profiling. Both isolates, despite accumulating similar viral titers, induced different symptomatology and strong differences in oxidative status. Early differences in several senescence-associated genes linked to the ORE1 and ORS1 regulatory networks as well as persistent divergence in key ROS production and scavenging systems of the plant were detected. However, at a later stage, both strains induced nutrient competition, indicating that senescence rates are influenced by different mechanisms upon viral infections. Analyses of ORE1 and ORS1 levels in infected Brassica juncea plants showed a similar pattern, suggesting a conserved differential response to both strains in Brassicaceae spp. Transcriptional analysis of the ORE1 and ORS1 regulons showed similarities between salicylic acid (SA) response and the early induction triggered by UK1, the most severe strain. By means of SA-defective NahG transgenic plants, we found that differential senescence progression and ROS accumulation between strains rely on an intact SA pathway.


Asunto(s)
Arabidopsis/virología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/farmacología , Arabidopsis/genética , Brassica napus/virología , Planta de la Mostaza/virología , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/virología , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ácido Salicílico/metabolismo , Plantones/genética , Plantones/virología , Factores de Tiempo , Transcriptoma
5.
Viruses ; 15(2)2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36851591

RESUMEN

Plant viral nanoparticles (VNPs) have become an attractive platform for the development of novel nanotools in the last years because of their safety, inexpensive production, and straightforward functionalization. Turnip mosaic virus (TuMV) is one example of a plant-based VNP used as a nanobiotechnological platform either as virions or as virus-like particles (VLPs). Their functionalization mainly consists of coating their surface with the molecules of interest via chemical conjugation or genetic fusion. However, because of their limitations, these two methods sometimes result in non-viable constructs. In this paper, we applied the SpyTag/SpyCatcher technology as an alternative for the functionalization of TuMV VLPs with peptides and proteins. We chose as molecules of interest the green fluorescent protein (GFP) because of its good traceability, as well as the vasoactive intestinal peptide (VIP), given the previous unsuccessful attempts to functionalize TuMV VNPs by other methods. The successful conjugation of VLPs to GFP and VIP using SpyTag/SpyCatcher was confirmed through Western blot and electron microscopy. Moreover, the isopeptide bond between SpyTag and SpyCatcher occurred in vivo in co-agroinfiltrated Nicotiana benthamiana plants. These results demonstrated that SpyTag/SpyCatcher improves TuMV functionalization compared with previous approaches, thus implying the expansion of the application of the technology to elongated flexuous VNPs.


Asunto(s)
Nanopartículas , Potyvirus , Western Blotting , Proteínas Fluorescentes Verdes
6.
Int J Biol Macromol ; 236: 123958, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36906197

RESUMEN

The viability of viral-derived nanoparticles (virions and VLPs) aimed to nanobiotechnological functionalizations of the coat protein (CP) of turnip mosaic virus has been studied by means of advanced computational methodologies that include molecular dynamics. The study has allowed to model the structure of the complete CP and its functionalization with three different peptides and obtain essential structural features such as order/disorder, interactions, and electrostatic potentials of their constituent domains. The results provide for the first time a dynamic view of a complete potyvirus CP, since experimental available structures so far obtained lack N- and C-terminal segments. The relevance of disorder in the most distal N-terminal subdomain, and the interaction of the less distal N-terminal subdomain with the highly ordered CP core, stand out as crucial characteristic for a viable CP. Preserving them proved of outmost importance to obtain viable potyviral CPs presenting peptides at their N-terminus.


Asunto(s)
Potyvirus , Potyvirus/metabolismo , Péptidos , Proteínas de la Cápside/metabolismo
7.
Front Plant Sci ; 12: 741050, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691118

RESUMEN

Two isolates of Turnip mosaic virus (UK 1 and JPN 1), representative of two different viral strains, induced differential alterations on secondary cell wall (SCW) development in Arabidopsis thaliana, suggesting cell-type specific effects of these viral infections. These potential effects were analyzed in inflorescence stems and flowers of infected plants, together with other possible cellular effects of the infections. Results obtained from macroscopic and histochemical analyses showed that infection with either virus significantly narrowed stem area, but defects in SCW were only found in JPN 1 infections. In flowers, reduced endothecium lignification was also found for JPN 1, while UK 1 infections induced severe floral cell and organ development alterations. A transcriptomic analysis focused on genes controlling and regulating SCW formation also showed notable differences between both viral isolates. UK 1 infections induced a general transcriptional decrease of most regulatory genes, whereas a more complex pattern of alterations was found in JPN 1 infections. The role of the previously identified viral determinant of most developmental alterations, the P3 protein, was also studied through the use of viral chimeras. No SCW alterations or creeping habit growth were found in infections by the chimeras, indicating that if the P3 viral protein is involved in the determination of these symptoms, it is not the only determinant. Finally, considerations as to the possibility of a taxonomical reappraisal of these TuMV viral strains are provided.

8.
J Gen Virol ; 91(Pt 1): 288-93, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19741065

RESUMEN

Previous resistance analyses of Arabidopsis thaliana mutants knocked out for eukaryotic translation initiation factors showed that disruption of the At-eIF(iso)4E or both the At-eIF(iso)4G1 and At-eIF(iso)4G2 genes resulted in resistance against turnip mosaic virus (TuMV). This study selected TuMV virulent variants that overcame this resistance and showed that two independent mutations in the region coding for the viral genome-linked protein (VPg) were sufficient to restore TuMV virulence in At-eIF(iso)4E and At-eIF(iso)4G1xAt-eIF(iso)4G2 knockout plants. As a VPg-eIF(iso)4E interaction has been shown previously to be critical for TuMV infection, a systematic analysis of the interactions between A. thaliana eIF4Es and VPgs of virulent and avirulent TuMVs was performed. The results suggest that virulent TuMV variants may use an eIF4F-independent pathway.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/virología , Factor 4G Eucariótico de Iniciación/genética , Factores Eucarióticos de Iniciación/genética , Mutación Missense , Enfermedades de las Plantas/virología , Potyvirus/patogenicidad , Proteínas no Estructurales Virales/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Arabidopsis/genética , Técnicas de Inactivación de Genes , Interacciones Huésped-Patógeno , Datos de Secuencia Molecular , Potyvirus/genética , Mapeo de Interacción de Proteínas , Supresión Genética , Proteínas no Estructurales Virales/genética , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/fisiología
9.
Viruses ; 12(6)2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32575409

RESUMEN

The involvement of different structural domains of the coat protein (CP) of turnip mosaic virus, a potyvirus, in establishing and/or maintaining particle assembly was analyzed through deletion mutants of the protein. In order to identify exclusively those domains involved in protein-protein interactions within the particle, the analysis was performed by agroinfiltration "in planta", followed by the assessment of CP accumulation in leaves and the assembly of virus-like particles lacking nucleic acids, also known as empty virus-like particles (eVLP). Thus, the interactions involving viral RNA could be excluded. It was found that deletions precluding eVLP assembly did not allow for protein accumulation either, probably indicating that non-assembled CP protein was degraded in the plant leaves. Deletions involving the CP structural core were incompatible with particle assembly. On the N-terminal domain, only the deletion avoiding the subdomain involved in interactions with other CP subunits was incorporated into eVLPs. The C-terminal domain was shown to be more permissive to deletions. Assembled eVLPs were found for mutants, eliminating the whole domain. The C-terminal domain mutants were unusually long, suggesting some role of the domain in the regulation of particle length. The identification of the CP domains responsible for eVLP formation will allow for new approaches to protein stretch replacement with peptides or proteins of nanobiotechnological interest. Finally, specific cases of application are considered.


Asunto(s)
Proteínas de la Cápside/genética , Potyvirus/genética , Ensamble de Virus/genética , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Dominios Proteicos/genética , ARN Viral/genética , Eliminación de Secuencia/genética , Nicotiana/virología
10.
Mol Plant Pathol ; 21(10): 1271-1286, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32737952

RESUMEN

Virus infections affect plant developmental traits but this aspect of the interaction has not been extensively studied so far. Two strains of Turnip mosaic virus differentially affect Arabidopsis development, especially flower stalk elongation, which allowed phenotypical, cellular, and molecular characterization of the viral determinant, the P3 protein. Transiently expressed wild-type green fluorescent protein-tagged P3 proteins of both strains and selected mutants of them revealed important differences in their behaviour as endoplasmic reticulum (ER)-associated peripheral proteins flowing along the reticulum, forming punctate accumulations. Three-dimensional (3D) model structures of all expressed P3 proteins were computationally constructed through I-TASSER protein structure predictions, which were used to compute protein surfaces and map electrostatic potentials to characterize the effect of amino acid changes on features related to protein interactions and to phenotypical and subcellular results. The amino acid at position 279 was the main determinant affecting stalk development. It also determined the speed of ER-flow of the expressed proteins and their final location. A marked change in the protein surface electrostatic potential correlated with changes in subcellular location. One single amino acid in the P3 viral protein determines all the analysed differential characteristics between strains differentially affecting flower stalk development. A model proposing a role of the protein in the intracellular movement of the viral replication complex, in association with the viral 6K2 protein, is proposed. The type of association between both viral proteins could differ between the strains.


Asunto(s)
Arabidopsis , Flores , Interacciones Huésped-Patógeno , Potyvirus/metabolismo , Proteínas no Estructurales Virales , Arabidopsis/crecimiento & desarrollo , Arabidopsis/virología , Proteínas de Arabidopsis/metabolismo , Retículo Endoplásmico/virología , Flores/crecimiento & desarrollo , Flores/virología , Estructura Molecular , Mutación Puntual , Potyvirus/genética , Dominios y Motivos de Interacción de Proteínas , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
11.
Virus Res ; 140(1-2): 91-7, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19059441

RESUMEN

Malva vein clearing virus (MVCV), a tentative species of the genus Potyvirus, was identified as the causal agent of viral symptoms in Malva sp. weed plants. Amplified viral genomic fragments corresponding to approximately 20% of the 3' terminal region of its genome were obtained using non-species specific, genus-specific reagents. The sequences of the PCR fragments were determined. BLAST and phylogenetic analyses of the deduced amino acid sequence indicated that MVCV is a distinct species of the genus Potyvirus and close to Pea seed-borne mosaic virus (PSbMV) with which it forms a new phylogenetic cluster within the genus. The results show that MVCV is a definitive member of the Potyvirus genus. Specific MVCV PCR primers were designed and validated as diagnostic tools, and used to assess the variability of the species. Much variation was found and this was not correlated with either the geographical origin of the isolates, or the severity of the symptoms. Recovery from viral symptoms was observed in natural and experimental hosts. Tests in experimental hosts showed that it was a true viral recovery, in that the virus was absent and the recovered tissues could not be infected. This is the first reported example of true viral recovery of a potyvirus in a natural system.


Asunto(s)
Genoma Viral , Malva/virología , Filogenia , Potyvirus/genética , Cartilla de ADN , Variación Genética , Enfermedades de las Plantas/virología , Potyvirus/clasificación , Potyvirus/aislamiento & purificación , Potyvirus/ultraestructura , ARN Viral/genética , Alineación de Secuencia , Análisis de Secuencia de ARN , Especificidad de la Especie
12.
Sci Rep ; 9(1): 15396, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31659175

RESUMEN

Turnip mosaic virus (TuMV), a potyvirus, is a flexible filamentous plant virus that displays a helical arrangement of coat protein copies (CPs) bound to the ssRNA genome. TuMV is a bona fide representative of the Potyvirus genus, one of most abundant groups of plant viruses, which displays a very wide host range. We have studied by cryoEM the structure of TuMV virions and its viral-like particles (VLPs) to explore the role of the interactions between proteins and RNA in the assembly of the virions. The results show that the CP-RNA interaction is needed for the correct orientation of the CP N-terminal arm, a region that plays as a molecular staple between CP subunits in the fully assembled virion.


Asunto(s)
Potyvirus/ultraestructura , Virión/ultraestructura , Microscopía por Crioelectrón , Potyvirus/fisiología , Ensamble de Virus
13.
Nanomaterials (Basel) ; 9(10)2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31658770

RESUMEN

Nanoparticles derived from the elongated flexuous capsids of Turnip mosaic virus (TuMV) have been shown to be efficient tools for antibody sensing with a very high sensitivity if adequately functionalized with the corresponding epitopes. Taking advantage of this possibility, TuMV virus-like particles (VLPs) have been genetically derivatized with a peptide from the chaperonin Hsp60, a protein described to be involved in inflammation processes and autoimmune diseases. Antibodies against the peptide have been previously shown to have a diagnostic value in at least one autoimmune disease, multiple sclerosis. The functionalized Hsp60-VLPs showed their significant increase in sensing potency when compared to monoclonal antibody detection of the peptide in a conventional immunoassay. Additionally, the developed Hsp60-VLPs allowed the detection of autoantibodies against the Hsp60 peptide in an in vivo mouse model of dextran sodium sulfate (DSS)-induced colitis. The detection of minute amounts of the autoantibodies allowed us to perform the analysis of their evolution during the progression of the disease. The anti-Hsp60 autoantibody levels in the sera of the inflamed mice went down during the induction phase of the disease. Increased levels of the anti-HSP60 autoantibodies were detected during the resolution phase of the disease. An extension of a previously proposed model for the involvement of Hsp60 in inflammatory processes is considered, incorporating a role for Hsp60 autoantibodies. This, and related models, can now be experimentally tested thanks to the autoantibody detection hypersensitivity provided by the functionalized VLPs.

14.
Methods Mol Biol ; 1776: 471-485, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29869261

RESUMEN

Potyviruses are plant viruses with elongated, flexuous virions amenable to modifications in the only viral structural protein, the coat protein (CP). Out of the several theoretically possible modifications to the CP, the one most exploited for peptide presentation is the genetic fusion of the peptide-to-be-expressed, to the CP N-terminus. Successful high-level expression of the modified CP has been achieved this way. The purified recombinant viral particles incorporate most, if not all, the properties of the expressed peptides. For many purposes, the recombinant virus particles present in extracts of infected plants should be purified for further use. Procedures for carrying out the whole process, from cloning to purification are described in the chapter.


Asunto(s)
Péptidos/genética , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Potyvirus/genética , Cápside/química , Péptidos/química , Enfermedades de las Plantas/genética , Virus de Plantas/patogenicidad , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/genética , Virión/genética , Virión/crecimiento & desarrollo
15.
Mol Plant Pathol ; 2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29517848

RESUMEN

Two different isolates of Turnip mosaic virus (TuMV: UK 1 and JPN 1) belonging to different virus strains were tested on three different Brassica species, namely turnip (Brassica rapa L.), Indian mustard (Brassica juncea L.) and Ethiopian mustard (Brassica carinata A. Braun). Although all three hosts were readily infected by isolate UK 1, isolate JPN 1 was able to establish a visible systemic infection only in the first two. Ethiopian mustard plants showed no local or systemic symptoms, and no virus antigens could be detected by enzyme-linked immunosorbent assay (ELISA). Thus, this species looks like a non-host for JPN 1, an apparent situation of non-host resistance (NHR). Through an experimental approach involving chimeric viruses made by gene interchange between two infectious clones of both virus isolates, the genomic region encoding the C-terminal domain of viral protein P3 was found to bear the resistance determinant, excluding any involvement of the viral fusion proteins P3N-PIPO and P3N-ALT in the resistance. A further determinant refinement identified two adjacent positions (1099 and 1100 of the viral polyprotein) as the main determinants of resistance. Green fluorescent protein (GFP)-tagged viruses showed that the resistance of Ethiopian mustard to isolate JPN 1 is only apparent, as virus-induced fluorescence could be found in discrete areas of both inoculated and non-inoculated leaves. In comparison with other plant-virus combinations of extreme resistance, we propose that Ethiopian mustard shows an apparent NHR to TuMV JPN 1, but not complete immunity or extreme resistance.

16.
Mol Plant Microbe Interact ; 20(12): 1589-95, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17990966

RESUMEN

Possible effects of host developmental stage on the amount of virus present in systemically infected plant tissues hitherto have received little attention. In this study, the pattern of virus accumulation over the plant lifespan has been examined in systemically invaded tissues of Arabidopsis thaliana infected by either of two distinct (+)RNA viruses: Turnip mosaic virus, a member of Potyvirus, and Oilseed rape mosaic virus, a member of Tobamovirus. Quantitative analyses of virus coat protein and virus genomic RNA in roots versus aerial plant parts revealed generally sinusoidal temporal patterns of virus accumulation. In noninoculated leaves, a time period was found during which no virus accumulation was detected. This period was coincident with the approximately 7 days of inflorescence bud formation and differentiation. In roots, virion content reached high levels a few days after inoculation, dropping dramatically during the period of bud formation and quickly recovering after it. These results, together with electron microscopy observations, are consistent with loss of virions due to disassembly. Fluorescence observations of green fluorescent protein-tagged virus-infected root tissue also were consistent with a net loss of virus-specified proteins. Inoculations performed after the emergence of the inflorescence and on A. thaliana flowering-time mutants support the temporal link between observed changes in virus content and inflorescence bud formation. Different host-involving biochemical processes can be invoked to provide mechanistic clues, but no one of them alone seems sufficient to explain the complex patterns of tight temporal regulation of virus accumulation observed in these experiments.


Asunto(s)
Arabidopsis/virología , Potyvirus/fisiología , Tobamovirus/fisiología , Arabidopsis/crecimiento & desarrollo , Proteínas de la Cápside/análisis , Proteínas de la Cápside/metabolismo , Flores/crecimiento & desarrollo , Flores/virología , Proteínas Fluorescentes Verdes/análisis , Modelos Biológicos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/virología , Potyvirus/genética , ARN Viral/análisis , ARN Viral/metabolismo , Tobamovirus/genética , Virión/genética , Virión/fisiología
17.
J Biotechnol ; 254: 17-24, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28625680

RESUMEN

Deployment of the elongated flexuous virions of Turnip mosaic virus (TuMV), a potyvirus, for peptide display on their external surface has been previously reported by us. Nonetheless, both in TuMV and other potyviruses some peptides hinder the ability of the virus to infect host plants. We found that a peptide derived from the human thrombin receptor (TR) inhibited TuMV infectivity. In an effort to get around this problem, TuMV virus-like particles (VLPs) were produced in plants by transient high-level expression of wild-type or recombinant coat protein (CP). Significant production of both recombinant and non-recombinant CP proteins was obtained from plant leaves. Assembled particles of each of these two proteins into VLPs were observed under the electron microscope. The capacity of TR-CP VLPs to log-increase the ability of TR antibody-sensing was confirmed. These results confirm that the use of VLPs is an effective way to overcome the problem of displaying infectivity-interfering peptides. This is yet another way of exploiting the use of plant-made flexuous elongated VLPs for nanobiotechnological purposes.


Asunto(s)
Péptidos/farmacología , Enfermedades de las Plantas/prevención & control , Potyvirus/efectos de los fármacos , Virión/efectos de los fármacos , Anticuerpos/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Péptidos/genética , Enfermedades de las Plantas/virología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/virología , Potyvirus/genética , Potyvirus/patogenicidad , Receptores de Trombina/genética , Virión/patogenicidad
18.
Virus Evol ; 3(2): vex033, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29250431

RESUMEN

Virulence evolution may have far-reaching consequences for virus epidemiology and emergence, and virologists have devoted increasing effort to understand the modulators of this process. However, still little is known on the mechanisms and determinants of virulence evolution in sterilizing viruses that, as they prevent host reproduction, may have devastating effects on host populations. Theory predicts that sterilizing parasites, including viruses, would evolve towards lower virulence and absolute host sterilization to optimize the exploitation of host resources and maximize fitness. However, this hypothesis has seldom been analyzed experimentally. We investigated the evolution of virulence of the sterilizing plant virus Turnip mosaic virus (TuMV) in its natural host Arabidopsis thaliana by serial passage experiments. After passaging, we quantified virus accumulation and infectivity, the effect of infection on plant growth and development, and virulence of the ancestral and passaged viral genotypes in A. thaliana. Results indicated that serial passaging increased the proportion of infected plants showing absolute sterility, reduced TuMV virulence, and increased virus multiplication and infectivity. Genomic comparison of the ancestral and passaged TuMV genotypes identified significant mutation clustering in the P1, P3, and 6K2 proteins, suggesting a role of these viral proteins in the observed phenotypic changes. Our results support theoretical predictions on the evolution of virulence of sterilizing parasites and contribute to better understand the phenotypic and genetic changes associated with this process.

19.
Front Plant Sci ; 7: 464, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27148295

RESUMEN

Elongated flexuous plant viral nanoparticles (VNPs) represent an interesting platform for developing different applications in nanobiotechnology. In the case of potyviruses, the virion external surface is made up of helically arrayed domains of the viral structural coat protein (CP), repeated over 2000 times, in which the N- and C-terminal domains of each CP are projected toward the exterior of the external virion surface. These characteristics provide a chemical environment rich in functional groups susceptible to chemical conjugations. We have conjugated Candida antarctica lipase B (CALB) onto amino groups of the external surface of the potyvirus turnip mosaic virus (TuMV) using glutaraldehyde as a conjugating agent. Using this approach, TuMV virions were transformed into scaffolds for CALB nanoimmobilization. Analysis of the resulting structures revealed the formation of TuMV nanonets onto which large CALB aggregates were deposited. The functional enzymatic characterization of the CALB-bearing TuMV nanonets showed that CALB continued to be active in the nanoimmobilized form, even gaining an increased relative specific activity, as compared to the non-immobilized form. These novel virus-based nanostructures may provide a useful new approach to enzyme nanoimmobilization susceptible to be industrially exploited.

20.
Dis Markers ; 2016: 6597970, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27212785

RESUMEN

There is a need for new noninvasive biomarkers (NIBMs) able to assess cholestasis and fibrosis in chronic cholestatic liver diseases (CCLDs). Tumorigenesis can arise from CCLDs. Therefore, autoantibodies to tumor-associated antigens (TAA) may be early produced in response to abnormal self-antigen expression caused by cholestatic injury. Vascular endothelial growth factor receptor-3 (VEGFR-3) has TAA potential since it is involved in cholangiocytes and lymphatic vessels proliferations during CCLDs. This study aims to detect autoantibodies directed at VEGFR-3 during bile duct ligation- (BDL-) induced cholestatic injury in rat sera and investigate whether they could be associated with traditional markers of liver damage, cholestasis, and fibrosis. An ELISA was performed to detect anti-VEGFR-3 autoantibodies in sera of rats with different degree of liver injury and results were correlated with aminotransferases, total bilirubin, and the relative fibrotic area. Mean absorbances of anti-VEGFR-3 autoantibodies were significantly increased from week one to week five after BDL. The highest correlation was observed with total bilirubin (R (2) = 0.8450, P = 3.04e - 12). In conclusion, anti-VEGFR-3 autoantibodies are early produced during BDL-induced cholestatic injury, and they are closely related to cholestasis, suggesting the potential of anti-VEGFR-3 autoantibodies as NIBMs of cholestasis in CCLDs and justifying the need for further investigations in patients with CCLD.


Asunto(s)
Autoanticuerpos/metabolismo , Bilirrubina/metabolismo , Colestasis/inmunología , Hepatopatías/inmunología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/inmunología , Animales , Antígenos de Neoplasias/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA