Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Biodivers ; 21(7): e202400500, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719739

RESUMEN

The Thymus genus includes various medicinal and aromatic species, cultivated worldwide for their unique medicinal and economic value. Besides, their conventional use as a culinary flavoring agent, Thymus species are well-known for their diverse biological effects, such as antioxidant, anti-fungal, anti-bacterial, anti-viral, anti-tumor, anti-inflammatory, anti-cancer, and anti-hypertensive properties. Hence, they are used in the treatment of fever, colds, and digestive and cardiovascular diseases. The pharmaceutical significance of Thymus plants is due to their high levels of bioactive components such as natural terpenoid phenol derivatives (p-cymene, carvacrol, thymol, geraniol), flavonoids, alkaloids, and phenolic acids. This review examines the phytochemicals, biological properties, functional food, and nutraceutical attributes of some important Thymus species, with a specific focus on their potential uses in the nutra-pharmaceutical industries. Furthermore, the review provides an insight into the mechanisms of biological activities of key phytochemicals of Thymus species exploring their potential for the development of novel natural drugs.


Asunto(s)
Thymus (Planta) , Thymus (Planta)/química , Humanos , Suplementos Dietéticos/análisis , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Antioxidantes/farmacología , Antioxidantes/química
2.
J Sci Food Agric ; 102(15): 6974-6983, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35686494

RESUMEN

BACKGROUND: This study determined the effect of processing conditions on protein extractability from Azolla pinnata fern, and their influence on the physicochemical, structural, techno-functional properties and protein quality. RESULTS: The protein extraction from A. pinnata fern was optimized through response surface methodology obtaining a maximum yield of 18.93% with a recovery rate of 73.66%. The A. pinnata fern protein concentrate (AFPC) had five protein bands with a molecular weight ranging from 17 to 56 kDa. AFPC contained high ß-sheet structure (36.61%), favouring its good thermal properties with three endothermic peaks at 54.28, 86.52 and 166.25 °C. The AFPC scored ≥ 1 for all essential amino acids, except for lysine and histidine. The AFPC exhibited exceptionally high techno-functional properties, particularly for water holding (5.46 g g-1 ) and fat absorption capacity (10.08 g g-1 ), and gelling properties (5% gelation concentration). The AFPC had high in vitro digestibility of 73%, signifying its high availability for human consumption. CONCLUSION: The underexploited A. pinnata fern is a potential source of edible protein, thus a promising nutraceutical or ingredient of functional and health-promoting foods. © 2022 Society of Chemical Industry.


Asunto(s)
Helechos , Humanos , Helechos/química , Helechos/metabolismo , Biomasa , Agua/metabolismo
3.
Prep Biochem Biotechnol ; 51(1): 44-53, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32701046

RESUMEN

The study was conducted to determine anti-tyrosinase and antioxidant activities of the extracted collagen hydrolysate (CH) derived from Malaysian jellyfish, Rhopilema hispidum. Collagen was extracted using 1:1 (w:v) 0.1 M NaOH solution at temperature 25 °C for 48 hr followed by treatment of 1:2 (w:v) distilled water for another 24 hr and freeze-dried. The extracted collagen was hydrolyzed using papain at optimum temperature, pH and enzyme/substrate ratio [E/S] of 60 °C, 7.0 and 1:50, respectively. CH was found to exhibit tyrosinase inhibitory activity, DPPH radical scavenging and metal ion-chelating assays up to 64, 28, and 83%, respectively, after 8 hr of hydrolysis process. The molecular weight of CH was found <10 kDa consisting of mainly Gly (19.219%), Glu (10.428%), and Arg (8.848%). The UV-visible spectrum analysis showed a major and minor peak at 218 and 276 nm, accordingly. The FTIR spectroscopy confirmed the amide groups in CH. The SEM images demonstrated spongy and porous structure of CH. In the cytotoxicity study, CH has no cytotoxicity against mouse embryonic 3T3 fibroblast cell line with IC50 value >500 µg/ml. Results revealed that the CH generated from this study has a potential to be developed as active ingredient in cosmeceutical application.


Asunto(s)
Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Colágeno/aislamiento & purificación , Colágeno/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Escifozoos/química , Células 3T3 , Secuencia de Aminoácidos , Aminoácidos , Animales , Antioxidantes/química , Colágeno/química , Fibroblastos/efectos de los fármacos , Concentración de Iones de Hidrógeno , Hidrólisis , Concentración 50 Inhibidora , Ratones , Peso Molecular , Papaína/química , Porosidad , Temperatura
4.
J Dairy Sci ; 103(3): 2053-2064, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31882211

RESUMEN

We evaluated the acute (single-dose) and subacute (repeated-dose) oral toxicity of alcalase-hydrolyzed whey protein concentrate. Our acute study revealed no death or treatment-related complications, and the median lethal dose of whey protein concentrate hydrolysate was >2,500 mg/kg. In the subacute study, when the hydrolysate was fed at 3 different concentrations (200, 400, and 800 mg/kg), no groups showed toxicity changes compared with controls. Then, whey protein concentrate hydrolysate was orally administered to spontaneously hypertensive rats. Results revealed significant reductions in blood pressure in a dose-dependent manner, and dosing at 400 mg/kg led to significant blood pressure reduction (-47.8 mm Hg) compared with controls (blood pressure maintained) and the findings of previous work (-21 mm Hg). Eight peptides-RHPEYAVSVLLR, GGAPPAGRL, GPPLPRL, ELKPTPEGDL, VLSELPEP, DAQSAPLRVY, RDMPIQAF, and LEQVLPRD-were sequentially identified and characterized. Of the peptides, VLSELPEP and LEQVLPRD showed the most prominent in vitro angiotensin-I converting enzyme inhibition with half-maximal inhibitory concentrations of 0.049 and 0.043 mM, respectively. These findings establish strong evidence for the in vitro and in vivo potential of whey protein concentrate hydrolysate to act as a safe, natural functional food ingredient that exerts antihypertensive activity.


Asunto(s)
Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Proteína de Suero de Leche/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Animales , Antihipertensivos/química , Antihipertensivos/toxicidad , Femenino , Hidrólisis , Masculino , Péptidos/farmacología , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/toxicidad , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Subtilisinas/metabolismo , Proteína de Suero de Leche/química , Proteína de Suero de Leche/toxicidad
5.
Phytochem Anal ; 31(2): 191-203, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31381209

RESUMEN

INTRODUCTION: Natural products are obtaining much acceptance as ergogenic aid, not only among athletes but also among the general population including people with excess body fat. Under normal circumstances, an obese person will have the desire and ability to exercise reduced; mainly because they are easily fatigued. Thus, they need to boost their energy production so that they can be more active and healthier. OBJECTIVE: In this present work, Morinda citrifolia L. leaf extract (MLE) which is believed to possess ergogenic property, was evaluated on its effect on an obese animal model using 1 H-NMR based metabolomics. MATERIAL AND METHODS: Rats were fed with high fat diet (HFD) for 12 weeks for obese development. Once this was achieved, all the rats underwent endurance exercise (forced swimming test) every 2 weeks for 8 weeks together with treatment. The time to exhaustion was recorded for each rat. Three different dosages of MLE: 50 mg/kg, 100 mg/kg and 200 mg/kg of body weight were used together with two positive controls: 5 mg/kg caffeine and 100 mg/kg green tea. Blood was collected before and after treatments for metabolomics study. RESULTS: Findings showed that feeding the rats at a dose of 200 mg/kg body weight MLE significantly prolonged the exhaustive swimming time of the rats, and altered the metabolites present in their serum. Discriminating metabolites involved were the product of various metabolic pathways, including carbohydrate, lipids metabolism and energy metabolism. Treatment with 200 mg/kg body weight MLE resulted in significant improvement in the metabolic perturbations where the proximity of the obese exercised treated group to that of normal exercised group in the partial least squares discriminant analysis score plot was observed. CONCLUSION: The present work demonstrated ergogenic property of MLE based on the improved metabolic perturbation in exercised obese rats.


Asunto(s)
Morinda , Animales , Humanos , Metabolómica , Obesidad , Extractos Vegetales , Ratas , Ratas Sprague-Dawley
6.
Molecules ; 25(11)2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521731

RESUMEN

Actinopyga lecanora (A. lecanora) is classified among the edible species of sea cucumber, known to be rich in protein. Its hydrolysates were reported to contain relatively high antioxidant activity. Antioxidants are one of the essential properties in cosmeceutical products especially to alleviate skin aging. In the present study, pH, reaction temperature, reaction time and enzyme/substrate ratio (E/S) have been identified as the parameters in the papain enzymatic hydrolysis of A. lecanora. The degree of hydrolysis (DH) with antioxidant activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) assays were used as the responses in the optimization. Analysis of variance (ANOVA), normal plot of residuals and 3D contour plots were evaluated to study the effects and interactions between parameters. The best conditions selected from the optimization were at pH 5.00, 70 °C of reaction temperature, 9 h of hydrolysis time and 1.00% enzyme/substrate (E/S) ratio, with the hydrolysates having 51.90% of DH, 42.70% of DPPH activity and 109.90 Fe2+µg/mL of FRAP activity. The A. lecanora hydrolysates (ALH) showed a high amount of hydrophobic amino acids (286.40 mg/g sample) that might be responsible for antioxidant and antityrosinase activities. Scanning electron microscopy (SEM) image of ALH shows smooth structures with pores. Antityrosinase activity of ALH exhibited inhibition of 31.50% for L-tyrosine substrate and 25.40% for L-DOPA substrate. This condition suggests that the optimized ALH acquired has the potential to be used as a bioactive ingredient for cosmeceutical applications.


Asunto(s)
Antioxidantes/farmacología , Compuestos de Bifenilo/metabolismo , Inhibidores Enzimáticos/farmacología , Compuestos Férricos/química , Monofenol Monooxigenasa/antagonistas & inhibidores , Picratos/metabolismo , Hidrolisados de Proteína/farmacología , Pepinos de Mar/química , Animales , Oxidación-Reducción , Papaína/metabolismo
7.
Molecules ; 25(11)2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32517380

RESUMEN

The challenges to fulfill the demand for a safe food supply are dramatically increasing. Mycotoxins produced by certain fungi cause great economic loss and negative impact on the sustainability of food supplies. Moreover, the occurrence of mycotoxins at high levels in foods poses a high health threat for the consumers. Biological detoxification has exhibited a high potential to detoxify foodstuffs on a cost-effective and large scale. Lactic acid bacteria showed a good potential as an alternative strategy for the elimination of mycotoxins. The current review describes the health and economic impacts associated with mycotoxin contamination in foodstuffs. Moreover, this review highlights the biological detoxification of common food mycotoxins by lactic acid bacteria.


Asunto(s)
Contaminación de Alimentos , Tecnología de Alimentos , Alimentos , Ácido Láctico/metabolismo , Micotoxinas/metabolismo , Animales , Pared Celular , Análisis Costo-Beneficio , Manipulación de Alimentos , Microbiología de Alimentos , Hongos , Humanos , Lactobacillales/metabolismo , Ocratoxinas/metabolismo
8.
Molecules ; 25(21)2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114490

RESUMEN

The naturopathic treatment of obesity is a matter of keen interest to develop efficient natural pharmacological routes for disease management with low or negligible toxicity and side effects. For this purpose, optimized ultrasonicated hydroethanolic extracts of Taraxacum officinale were evaluated for antiobesity attributes. The 2,2-diphenyl-1-picrylhydrazyl method was adopted to evaluate antioxidant potential. Porcine pancreatic lipase inhibitory assay was conducted to assess the in vitro antiobesity property. Ultra-high performance chromatography equipped with a mass spectrometer was utilized to profile the secondary metabolites in the most potent extract. The 60% ethanolic extract exhibited highest extract yield (25.05 ± 0.07%), total phenolic contents (123.42 ± 0.007 mg GAE/g DE), total flavonoid contents (55.81 ± 0.004 RE/g DE), DPPH-radical-scavenging activity (IC50 = 81.05 ± 0.96 µg/mL) and pancreatic lipase inhibitory properties (IC50 = 146.49 ± 4.24 µg/mL). The targeted metabolite fingerprinting highlighted the presence of high-value secondary metabolites. Molecular-binding energies computed by docking tool revealed the possible contribution towards pancreatic lipase inhibitory properties of secondary metabolites including myricetin, isomangiferin, icariside B4, kaempferol and luteolin derivatives when compared to the standard drug orlistat. In vivo investigations revealed a positive impact on the lipid profile and obesity biomarkers of obese mice. The study presents Taraxacum officinale as a potent source of functional bioactive ingredients to impart new insights into the existing pool of knowledge of naturopathic approaches towards obesity management.


Asunto(s)
Fármacos Antiobesidad/farmacología , Metabolómica , Simulación del Acoplamiento Molecular , Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Taraxacum/química , Animales , Fármacos Antiobesidad/metabolismo , Fármacos Antiobesidad/uso terapéutico , Peso Corporal/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Etanol/química , Lipasa/antagonistas & inhibidores , Lipasa/química , Lipasa/metabolismo , Ratones , Obesidad/metabolismo , Páncreas/enzimología , Extractos Vegetales/metabolismo , Extractos Vegetales/uso terapéutico , Conformación Proteica , Espectrometría de Masas en Tándem
9.
Mar Drugs ; 17(5)2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31137657

RESUMEN

Microalgae represent a potential source of renewable nutrition and there is growing interest in algae-based dietary supplements in the form of whole biomass, e.g., Chlorella and Arthrospira, or purified extracts containing omega-3 fatty acids and carotenoids. The commercial production of bioactive compounds from microalgae is currently challenged by the biorefinery process. This review focuses on the biochemical composition of microalgae, the complexities of mass cultivation, as well as potential therapeutic applications. The advantages of open and closed growth systems are discussed, including common problems encountered with large-scale growth systems. Several methods are used for the purification and isolation of bioactive compounds, and many products from microalgae have shown potential as antioxidants and treatments for hypertension, among other health conditions. However, there are many unknown algal metabolites and potential impurities that could cause harm, so more research is needed to characterize strains of interest, improve overall operation, and generate safe, functional products.


Asunto(s)
Microalgas/química , Valor Nutritivo , Fitoquímicos/química , Reactores Biológicos , Suplementos Dietéticos , Humanos , Microalgas/crecimiento & desarrollo , Fitoquímicos/aislamiento & purificación
10.
Mar Drugs ; 15(4)2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28362352

RESUMEN

The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4-7), temperature (40-70 °C), enzyme/substrate (E/S) ratio (0.5%-2%) and time (30-360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Bromelaínas/química , Peces/metabolismo , Hidrolisados de Proteína/química , Animales , Antihipertensivos/química , Antihipertensivos/farmacología , Concentración de Iones de Hidrógeno , Hidrólisis/efectos de los fármacos , Temperatura
11.
BMC Complement Altern Med ; 17(1): 122, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28228098

RESUMEN

BACKGROUND: Obesity is a major health concern both in developed and developing countries. The use of herbal medicines became the subject of interest for the management of obesity due to its natural origin, cost effectiveness and minimal side effects. The present study aimed at investigating anti-obesity potential of ethanolic extract from Cosmos caudatus Kunth leaf (EECCL). METHODS: In this study, the rats were randomly divided into six groups i.e., (1) Normal Diet (ND); (2) Normal Diet and 175 mg/kgBW of EECCL (ND + 175 mg/kgBW); (3) Normal Diet and 350 mg/kgBW of EECCL (ND + 350 mg/kgBW); (4) High Fat Diet (HFD); (5) High Fat Diet and 175 mg/kgBW of EECCL (HFD + 175 mg/kgBW); (6) High Fat Diet and 350 mg/kgBW of EECCL (HFD + 350 mg/kgBW). The anti-obesity potential was evaluated through analyses of changes in body weight, visceral fat weight, and blood biochemicals including total cholesterol, triglycerides, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), leptin, insulin, adiponectin, ghrelin and fecal fat content. In addition, metabolite profiling of EECCL was carried out using NMR spectroscopy. RESULTS: Rats receiving EECCL together with HFD showed significant (p < 0.05) reduction in body weight gain compared to rats receiving HFD only. At the end of study, the body weight gain of EECCL treated rats was not significantly (p > 0.05) different with those of ND rats. Other related obesity biomarkers including plasma lipid profiles, insulin, leptin, ghrelin and adiponectin levels also showed significant improvement (p < 0.05). Administration of EECCL caused significant (p < 0.05) increase in fecal fat excretion, which validates the hypothesis of lipase inhibition, an anti-obesity mechanism similar to standard drug of Orlistat. The 1H-NMR spectra of EECCL ascertained the presence of catechin, quercetin, rutin, kaempherol and chlorogenic acid in the extract. CONCLUSION: Conclusively, EECCL showed anti-obesity properties by inhibition of intestinal lipid absorption and modulation of adipocytes markers.


Asunto(s)
Fármacos Antiobesidad/farmacología , Asteraceae/química , Extractos Vegetales/farmacología , Animales , Fármacos Antiobesidad/aislamiento & purificación , Peso Corporal , Dieta Alta en Grasa , Ingestión de Alimentos , Malasia , Masculino , Ratas , Ratas Sprague-Dawley
12.
J Ind Microbiol Biotechnol ; 43(10): 1387-95, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27541157

RESUMEN

In this study, four selected commercial strains of Aspergillus oryzae were collected from soy sauce koji. These A. oryzae strains designated as NSK, NSZ, NSJ and NST shared similar morphological characteristics with the reference strain (A. oryzae FRR 1675) which confirmed them as A. oryzae species. They were further evaluated for their ability to produce γ-aminobutyric acid (GABA) by cultivating the spore suspension in a broth medium containing 0.4 % (w/v) of glutamic acid as a substrate for GABA production. The results showed that these strains were capable of producing GABA; however, the concentrations differed significantly (P < 0.05) among themselves. Based on the A. oryzae strains, highest GABA concentration was obtained from NSK (194 mg/L) followed by NSZ (63 mg/L), NSJ (51.53 mg/L) and NST (31.66 mg/L). Therefore, A. oryzae NSK was characterized and the sequence was found to be similar to A. oryzae and A. flavus with 99 % similarity. The evolutionary distance (K nuc) between sequences of identical fungal species was calculated and a phylogenetic tree prepared from the K nuc data showed that the isolate belonged to the A. oryzae species. This finding may allow the development of GABA-rich ingredients using A. oryzae NSK as a starter culture for soy sauce production.


Asunto(s)
Aspergillus oryzae/metabolismo , Alimentos de Soja , Ácido gamma-Aminobutírico/biosíntesis , Aspergillus oryzae/clasificación , Fermentación , Ácido Glutámico/metabolismo , Filogenia
13.
Mar Drugs ; 14(10)2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27706040

RESUMEN

Food protein hydrolysates are known to exhibit angiotensin converting enzyme (ACE) inhibitory properties and can be used as a novel functional food for prevention of hypertension. This study evaluated the ACE inhibitory potentials of Actinopyga lecanora proteolysate (ALP) in vivo. The pre-fed rats with ALP at various doses (200, 400, 800 mg/kg body weight) exhibited a significant (p ≤ 0.05) suppression effect after inducing hypertension. To determine the optimum effective dose that will produce maximal reduction in blood pressure, ALP at three doses was fed to the rats after inducing hypertension. The results showed that the 800 mg/kg body weight dose significantly reduced blood pressure without noticeable negative physiological effect. In addition, there were no observable changes in the rats' heart rate after oral administration of the ALP. It was concluded that Actinopyga lecanora proteolysate could potentially be used for the development of functional foods and nutraceuticals for prevention and treatment of hypertension.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antihipertensivos/farmacología , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Pepinos de Mar/química , Inhibidores de la Enzima Convertidora de Angiotensina/química , Animales , Antihipertensivos/química , Presión Sanguínea/efectos de los fármacos , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Ratas , Ratas Endogámicas SHR , Ratas Sprague-Dawley
14.
J Microencapsul ; 32(5): 488-95, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26079597

RESUMEN

The aim of this study was to produce and characterise nanosize liposomes containing bioactive peptides with antioxidative and ACE-inhibitory properties, derived from winged bean seeds (WBS) protein. WBS powder was papain-proteolysed, at 70 °C and pH 6.5 for six hours, followed by encapsulation via a solvent-free heating method. The results showed that the WBS proteolysate was successfully incorporated into spherical, unilamellar liposomal particles, with particle diameter, polydispersity index, zeta potential and encapsulation efficiency of 193.3 ± 0.12 nm, 0.4 ± 0.02 (unit less), -70.5 ± 0.30 mV and 27.6 ± 1.17%, respectively. It also demonstrated good storage stability over eight weeks at 4 °C, indicated by slight increment (15.1%) in particle size and a zeta potential only weaker by 17.2% at the end of the study period. These results suggested the feasibility of entrapping water soluble peptides in hydrophobic liposomal system that, upon optimisation, has the potential to act as bioactive food ingredient.


Asunto(s)
Fabaceae/química , Nanopartículas/química , Péptidos/química , Proteínas de Almacenamiento de Semillas/química , Semillas/química , Liposomas
15.
Int J Mol Sci ; 16(12): 28870-85, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26690117

RESUMEN

In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora) hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8%) after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH) (56.00%) and ferrous ion-chelating (FIC) (59.00%) methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Pepinos de Mar/química , Aminoácidos/química , Aminoácidos/farmacología , Animales , Humanos , Hidrólisis , Péptidos/química , Péptidos/farmacología , Peptidil-Dipeptidasa A/metabolismo
16.
Molecules ; 20(4): 6654-69, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25884548

RESUMEN

Dominant strains of lactic acid bacteria (LAB) isolated from honey bees were evaluated for their γ-aminobutyric acid (GABA)-producing ability. Out of 24 strains, strain Taj-Apis362 showed the highest GABA-producing ability (1.76 mM) in MRS broth containing 50 mM initial glutamic acid cultured for 60 h. Effects of fermentation parameters, including initial glutamic acid level, culture temperature, initial pH and incubation time on GABA production were investigated via a single parameter optimization strategy. The optimal fermentation condition for GABA production was modeled using response surface methodology (RSM). The results showed that the culture temperature was the most significant factor for GABA production. The optimum conditions for maximum GABA production by Lactobacillus plantarum Taj-Apis362 were an initial glutamic acid concentration of 497.97 mM, culture temperature of 36 °C, initial pH of 5.31 and incubation time of 60 h, which produced 7.15 mM of GABA. The value is comparable with the predicted value of 7.21 mM.


Asunto(s)
Abejas/microbiología , Lactobacillus plantarum/metabolismo , Ácido gamma-Aminobutírico/biosíntesis , Análisis de Varianza , Animales , Fermentación , Ácido Glutámico/metabolismo , Concentración de Iones de Hidrógeno , Lactobacillus plantarum/crecimiento & desarrollo , Lactobacillus plantarum/aislamiento & purificación , Modelos Teóricos , Temperatura , Ácido gamma-Aminobutírico/química
17.
ScientificWorldJournal ; 2014: 526105, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25162053

RESUMEN

Current study presents RSM based optimized production of biodiesel from palm oil using chemical and enzymatic transesterification. The emission behavior of biodiesel and its blends, namely, POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 was examined using diesel engine (equipped with tube well). Optimized palm oil fatty acid methyl esters (POFAMEs) yields were depicted to be 47.6 ± 1.5, 92.7 ± 2.5, and 95.4 ± 2.0% for chemical transesterification catalyzed by NaOH, KOH, and NaOCH3, respectively, whereas for enzymatic transesterification reactions catalyzed by NOVOZYME-435 and A. n. lipase optimized biodiesel yields were 94.2 ± 3.1 and 62.8 ± 2.4%, respectively. Distinct decrease in particulate matter (PM) and carbon monoxide (CO) levels was experienced in exhaust emissions from engine operating on biodiesel blends POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 comparative to conventional petroleum diesel. Percentage change in CO and PM emissions for different biodiesel blends ranged from -2.1 to -68.7% and -6.2 to -58.4%, respectively, relative to conventional diesel, whereas an irregular trend was observed for NOx emissions. Only POB-5 and POB-20 showed notable reductions, whereas all other blends (POB-40 to POB-100) showed slight increase in NOx emission levels from 2.6 to 5.5% comparative to petroleum diesel.


Asunto(s)
Biocombustibles , Aceites de Plantas/química , Emisiones de Vehículos/análisis , Cromatografía de Gases , Monitoreo del Ambiente , Esterificación , Aceite de Palma , Material Particulado/análisis , Energía Renovable , Espectroscopía Infrarroja por Transformada de Fourier
18.
J Food Sci Technol ; 51(12): 3658-68, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25477632

RESUMEN

Winged bean [Psophocarpus tetragonolobus (L.) DC.] seed is a potential underexploited source of vegetable protein due to its high protein content. In the present work, undefatted and defatted winged bean seed hydrolysates, designated as UWBSH and DWBSH, respectively were produced separately by four proteolytic enzymes namely Flavourzyme, Alcalase, Bromelain, and Papain using pH-stat method in a batch reactor. Enzymatic hydrolysis was carried out over a period of 0.5 to 5 h. UWBSH and DWBSH produced were tested for their ACE inhibitory activity in relation to the hydrolysis time and degree of hydrolysis (DH). Maximum ACE inhibitory activity, both for UWBSH and DWBSH, were observed during 3 to 5 h of hydrolysis. Both, UWBSH (DH 91.84 %), and DWSBH (DH 18.72 %), produced by Papain at 5 h hydrolysis, exhibited exceptionally high ACE inhibitory activity with IC50 value 0.064 and 0.249 mg mL(-1), respectively. Besides, papain-produced UWBSH and DWBSH were further fractionated into three fractions based on molecular weight (UWBSH-I, <10 kDa; UWBSH-II, <5 kDa; UWBSH-III, <2 kDa) and (DWBSH-I, <10 kDa; DWBSH-II, <5 kDa; DWBSH-III, <2 kDa). UWBSH-III revealed the highest ACE inhibitory activity (IC50 0.003 mg mL(-1)) compared with DWBSH-III (IC50 0.130 mg mL(-1)). The results of the present investigation revealed that winged bean seed hydrolysates can be explored as a potential source of ACE inhibitory peptides suggesting their uses for physiological benefits as well as for other functional food applications.

19.
J Biotechnol ; 383: 1-12, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38309588

RESUMEN

The attempt of this review article is to determine the impact of nuclear and mitochondrial damages on the propagation of cancer incidences. This review has advanced our understanding to altered genes and their relevant cancerous proteins. The progressive raising effects of free reactive oxygen species ROS and toxicogenic compounds contributed to significant mutation in nuclear and mitochondrial DNA where the incidence of gastric cancer is found to be linked with down regulation of some relevant genes and mutation in some important cellular proteins such as AMP-18 and CA-11. Thereby, the resulting changes in gene mutations induced the apparition of newly polymorphisms eventually leading to unusual cellular expression to mutant proteins. Reduction of these apoptotic growth factors and nuclear damages is increasingly accepted by cell reactivation effect, enhanced cellular signaling and DNA repairs. Acetylation, glycation, pegylation and phosphorylation are among the molecular techniques used in DNA repair for rectifying mutation incidences. In addition, the molecular labeling based fluorescent materials are currently used along with the bioconjugating of signal molecules in targeting disease translocation site, particularly cancers and tumors. These strategies would help in determining relevant compounds capable in overcoming problems of down regulating genes responsible for repair mechanisms. These issues of course need interplay of both proteomic and genomic studies often in combination of molecular engineering to cible the exact expressed gene relevant to these cancerous proteins.


Asunto(s)
Neoplasias , Proteómica , Humanos , ADN Mitocondrial , Incidencia , Genómica , Neoplasias/genética
20.
Food Funct ; 15(12): 6578-6596, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38809119

RESUMEN

This study investigated the dual potential of Azolla pinnata fern protein hydrolysates (AFPHs) as functional and nutraceutical ingredients in an oil/water emulsion system. The AFPH-stabilised emulsion (AFPH-E) displayed a small and uniform droplet distribution and was stable to aggregation and creaming over a wide range of pH (5-8), salt concentrations ≤ 100 mM, and heat treatment ≤ 70 °C. Besides, the AFPH-E possessed and maintained strong biological activities, including antihypertensive, antidiabetic, and antioxidant, under different food processing conditions (pH 5-8; NaCl: 50-150 mM, and heat treatment: 30-100 °C). Following in vitro gastrointestinal digestion, the antihypertensive and antioxidant activities were unchanged, while a notable increase of 8% was observed for DPPH. However, the antidiabetic activities were partially reduced in the range of 5-11%. Notably, AFPH-E modulated the gut microbiota and short-chain fatty acids (SCFAs), promoting the growth of beneficial bacteria, particularly Bifidobacteria and Lactobacilli, along with increased SCFA acetate, propionate, and butyrate. Also, AFPH-E up to 10 mg mL-1 did not affect the proliferation of the normal colon cells. In the current work, AFPH demonstrated dual functionality as a plant-based emulsifier with strong biological activities in an oil/water emulsion system and promoted healthy changes in the human gut microbiota.


Asunto(s)
Suplementos Dietéticos , Emulsionantes , Emulsiones , Helechos , Microbioma Gastrointestinal , Hidrolisados de Proteína , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Emulsiones/química , Emulsionantes/farmacología , Emulsionantes/química , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Helechos/química , Antioxidantes/farmacología , Hipoglucemiantes/farmacología , Ácidos Grasos Volátiles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA